\(\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=\frac{4b\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}\)

\(=\frac{\left(2\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)^2}{8b}=\frac{\left(2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\right)^2}{8b}=\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}\)

vì \(0< =\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\Rightarrow2\sqrt{ab}< =a+b\Rightarrow2\sqrt{ab}-2b< =a+b-2b\)

\(\Rightarrow2\sqrt{ab}-2b< =a-b\)

dấu = xảy ra khi và chỉ khi a=b mà a>b(giả thiết)\(\Rightarrow2\sqrt{ab}-2b< a-b\Rightarrow\frac{\left(2\sqrt{ab}-2b\right)^2}{8b}< \frac{\left(a-b\right)^2}{8b}\)

\(\Rightarrow\frac{a+b}{2}-\sqrt{ab}< \frac{\left(a-b\right)^2}{8b}\left(đpcm\right)\)

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

6 tháng 1 2019

Ta có:

\(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}>0\)

Do đó: B < A và:

\(\frac{\left(a-b\right)^2}{8\left(A-B\right)}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)}{4\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)

Mà: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}=\frac{a+b+2\sqrt{ab}}{4}=\frac{a+b}{4}+\frac{\sqrt{ab}}{2}=\frac{A+B}{2}\)

\(B< A\Rightarrow B< \frac{A+B}{2}< A\left(đpcm\right)\)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

20 tháng 10 2016

sửa đề\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)( luôn đúng với \(x,y\ge1\))

Đpcm