K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\frac{4}{a}+\frac{1}{4b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4.\left(a+b\right)\)

\(=\frac{4}{a}+\frac{1}{4b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4.\frac{5}{4}\)

áp dụng bất đẳng thức cô si ta có:

\(P\ge2\sqrt{\frac{4}{a}.4a}+2\sqrt{\frac{1}{4b}.4b}-5\)

\(=2.4+2.1-5=5\)

vậy MINP=5

\(P=\frac{4}{a}+\frac{1}{b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4a-4b\)

Áp dụng bất đẳng thức cho 2 số nguyên dương \(4a+\frac{4}{a},\frac{1}{4b}+4b>0\)ta đc:

\(4a+\frac{4}{a}\ge8\)

\(\frac{1}{4b}+4b\ge2\)

Và \(\frac{a}{b}=\frac{5}{4}\Rightarrow4\left(a+b\right)=5\)

\(\Rightarrow P\ge5\)

AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:

Áp dụng BĐT Cô-si: 
$\frac{1}{a}+a\geq 2\sqrt{\frac{1}{a}.a}=2$

$\frac{1}{4b}+b\geq 2\sqrt{\frac{1}{4b}.b}=1$

$\frac{1}{16c}+c\geq 2\sqrt{\frac{1}{16c}.c}=\frac{1}{2}$

Cộng các BĐT trên lại suy ra:

$M+a+b+c\geq 2+1+\frac{1}{2}$

$\Leftrightarrow M+1\geq 2+1+\frac{1}{2}$

$\Leftrightarrow M\geq \frac{5}{2}$

Vậy $M_{\min}=\frac{5}{2}$

13 tháng 1 2023

\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)

\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)

\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).

Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)

\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=b=2\).

Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

13 tháng 3 2016

Ta có:\(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}>=1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Tương tự \(\frac{1}{b^2+1}>=1-\frac{b}{2}\)

               1/(c^2+1)>=1-c/2

5 tháng 4 2018

Trả lời đi mn