Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{a}+a\geq 2\sqrt{\frac{1}{a}.a}=2$
$\frac{1}{4b}+b\geq 2\sqrt{\frac{1}{4b}.b}=1$
$\frac{1}{16c}+c\geq 2\sqrt{\frac{1}{16c}.c}=\frac{1}{2}$
Cộng các BĐT trên lại suy ra:
$M+a+b+c\geq 2+1+\frac{1}{2}$
$\Leftrightarrow M+1\geq 2+1+\frac{1}{2}$
$\Leftrightarrow M\geq \frac{5}{2}$
Vậy $M_{\min}=\frac{5}{2}$
\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)
\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)
\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).
Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)
\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=b=2\).
Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)
Ta có:\(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}>=1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Tương tự \(\frac{1}{b^2+1}>=1-\frac{b}{2}\)
1/(c^2+1)>=1-c/2
\(P=\frac{4}{a}+\frac{1}{4b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4.\left(a+b\right)\)
\(=\frac{4}{a}+\frac{1}{4b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4.\frac{5}{4}\)
áp dụng bất đẳng thức cô si ta có:
\(P\ge2\sqrt{\frac{4}{a}.4a}+2\sqrt{\frac{1}{4b}.4b}-5\)
\(=2.4+2.1-5=5\)
vậy MINP=5
\(P=\frac{4}{a}+\frac{1}{b}=\left(\frac{4}{a}+4a\right)+\left(\frac{1}{4b}+4b\right)-4a-4b\)
Áp dụng bất đẳng thức cho 2 số nguyên dương \(4a+\frac{4}{a},\frac{1}{4b}+4b>0\)ta đc:
\(4a+\frac{4}{a}\ge8\)
\(\frac{1}{4b}+4b\ge2\)
Và \(\frac{a}{b}=\frac{5}{4}\Rightarrow4\left(a+b\right)=5\)
\(\Rightarrow P\ge5\)