Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)
1 dòng :)
Ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{a+b+2}{\left(a+1\right)\left(b+1\right)}=\frac{3}{ab+2}\left(1\right)\)
Mà \(a+b\ge2\sqrt{ab}\left(1\ge2\sqrt{ab}\right)\Leftrightarrow ab\le\frac{1}{4}\)
Thay vào \(\left(1\right)\) ta được:
\(\frac{3}{ab+2}\ge\frac{3}{\frac{1}{4}+2}=\frac{3}{\frac{9}{4}}=\frac{4}{3}\)
Hay \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\) (Đpcm)
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
Xét \(a+b\ge2\sqrt{ab}\Leftrightarrow\frac{1}{2}\ge\sqrt{ab}\Leftrightarrow\frac{1}{4}\ge ab\)
\(\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)\)
\(=1+\frac{b+a}{ab}\)
\(=1+\frac{1}{ab}\ge1+\frac{1}{\frac{1}{4}}=1+4=5\)
=> đề sai