K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Không mất tính tổng quát ta giả sử: \(a\ge b\)

Nếu \(a\ge b>\frac{1}{2}\Rightarrow a^2\ge b^2>\frac{1}{4}\Rightarrow a^2+b^2>\frac{1}{2}\)(loại)

Nếu \(\frac{1}{2}>a\ge b\Rightarrow\frac{1}{4}>a^2\ge b^2\Rightarrow a^2+b^2< \frac{1}{2}\)(loại)

Vậy chỉ còn trường hợp: \(a\ge\frac{1}{2}\ge b\)

\(\Rightarrow\hept{\begin{cases}a-\frac{1}{2}\ge0\\b-\frac{1}{2}\le0\end{cases}}\)

Nhân vế theo vế ta được

\(\left(a-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)\le0\)

\(\Leftrightarrow ab-\frac{a+b}{2}+\frac{1}{4}\le0\)

\(\Leftrightarrow a+b\ge2ab+\frac{1}{2}\)

Từ bài toán ta có

\(\frac{1}{1-2ab}+\frac{1}{a}+\frac{1}{b}=\frac{1}{1-2ab}+\frac{a+b}{ab}\)

\(\ge\frac{1}{1-2ab}+\frac{2ab+\frac{1}{2}}{ab}=\frac{1}{1-2ab}+\frac{1}{2ab}+2\)

\(\ge\frac{\left(1+1\right)^2}{1-2ab+2ab}+2=4+2=6\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 12 2016

ket qua la 213/4

3 tháng 2 2020

Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)

Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)

\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)

4 tháng 2 2020

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.

2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)

\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)

\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)

\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)

11 tháng 12 2016

áp dụng Cô-si ta có:

\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5.\frac{1}{a}.1.1}=4a\)

\(b^5+\frac{1}{b}+1+1\ge4\sqrt[4]{b^5.\frac{1}{b}.1.1}=4b\)

\(c^5+\frac{1}{c}+1+1\ge4\sqrt[4]{c^5.\frac{1}{c}.1.1}=4c\)

\(\Rightarrow a^5+b^5+c^5+1+1+1+1+1+1\ge4a+4b+4c\)

\(\Leftrightarrow a^5+b^5+c^5\ge4\left(a+b+c\right)-6=4.3-6=6\)

Dấu = xảy ra khi a=b=c=1

16 tháng 11 2018

Vẫn áp dụng cô si nhưng lần này sẽ khác cách của Thành:

Áp dụng BĐT Côsi,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Suy ra \(VT\ge a^5+b^5+c^5+3\sqrt[3]{\frac{1}{abc}}\)

Suy ra \(VT+1+1\ge a^5+b^5+c^5+1+1+3\sqrt[3]{\frac{1}{abc}}\) (1)

Áp dụng Côsi,ta có: \(a^5+b^5+c^5+1+1\ge5\sqrt[5]{1a^5b^5c^51}=5abc\)(2)

Từ (1) và (2) suy ra \(VT+1+1\ge5abc+3\sqrt[3]{\frac{1}{abc}}\)

\(VT\ge5abc+3\sqrt[3]{\frac{1}{abc}}-2\).Ta cần chứng minh \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\Leftrightarrow5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) (3)

Thật vậy ta có: \(\sqrt[3]{abc}\le\frac{a+b+c}{3}\Rightarrow abc\ge\frac{a+b+c}{3}\).Áp dụng vào,ta có:

\(abc\ge\frac{a+b+c}{3}=1\) (do a + b + c = 3).

Thay vào (3),ta có:\(5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) suy ra \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\) suy ra đpcm

25 tháng 9 2020

Áp dụng bđt ngược chiều là ra

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{2ab+a^2+b^2}+\frac{1}{2\left(\frac{a+b}{2}\right)^2}=\frac{4}{\left(a+b\right)^2}+2=6\)

25 tháng 9 2020

hmm... nếu mà xét dấu bằng thì tại a=b=1/2

24 tháng 1 2019

a) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

( v ì   a   +   b   >   0   n ê n   | a   +   b |   =   a   +   b ;   b 2   >   0 )

NV
11 tháng 7 2020

\(VT=\frac{a}{\sqrt{a-1}}+\frac{b}{\sqrt{b-1}}+\frac{c}{\sqrt{c-1}}=\frac{a-1+1}{\sqrt{a-1}}+\frac{b-1+1}{\sqrt{b-1}}+\frac{c-1+1}{\sqrt{c-1}}\)

\(VT\ge\frac{2\sqrt{a-1}}{\sqrt{a-1}}+\frac{2\sqrt{b-1}}{\sqrt{b-1}}+\frac{2\sqrt{c-1}}{\sqrt{c-1}}=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

7 tháng 10 2016

Ta áp dụng Bđt Cauchy ngược dấu

\(T=\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)

\(\Leftrightarrow\frac{a^2b}{2ab^2+1}+\frac{b^2c}{2bc^2+1}+\frac{c^2a}{2ca^2+1}\le1\)

\(\frac{ab^2}{2ab^2+1}\le\frac{ab^2}{3\sqrt[3]{ab^2\cdot ab^2\cdot1}}\)\(\le\frac{\sqrt[3]{ab^2}}{3}\le\frac{a+2b}{9}\left(1\right)\)

Tương tự ta có:

\(\frac{b^2c}{2bc^2+1}\le\frac{b+2c}{9}\left(2\right);\frac{c^2a}{2ca^2+1}\le\frac{c+2a}{9}\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta có:

\(T\le\frac{a+b+c+2c+2a+2b}{9}\)\(=\frac{3\left(a+b+c\right)}{9}=\frac{a+b+c}{3}=1\)

Dấu = khi a=b=c=1

17 tháng 4 2020

bài náy áp dụng bđt Cosi cũng được

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.