Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)
A = \(\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)(Vì a + b = 1)
A = \(\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)
A = \(4+\frac{2a}{b}+\frac{2b}{a}+1\)
A = \(5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)
Vì a, b dương nên áp dụng BĐT Cô - si cho 2 số dương, ta được :
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2.1=2\)
\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)
\(\Leftrightarrow5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4+5\)
\(\Leftrightarrow A\ge9\)
Dấu bằng xảy ra \(\Leftrightarrow\)a = b > 0
Vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)với a, b là các số dương và a + b = 1
Tớ quên. Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b=1\end{cases}}\)
\(\Leftrightarrow a=b=\frac{1}{2}\)
\(P=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{\left(a+1\right)\left(b+1\right)}{ab}\)
Áp dụng Cosi 3 số
\(a+1=a+a+b\ge3\sqrt[3]{a^2b}\)
\(a+1=b+b+a\ge3\sqrt[3]{ab^2}\)
Nhận lại 3 BĐT trên theo vế:
\(\left(a+1\right)\left(b+1\right)\ge9ab\)
\(\Leftrightarrow\frac{\left(a+1\right)\left(b+1\right)}{ab}\ge9\)
\(\Leftrightarrow P\ge9\)
Đẳng thức xảy ra khi a=b=c
Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\) (1)
\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)
\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)
\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) (vì a + b = 1)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (2)
Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.
1+1/a= 1+ (a+b)/a = 2+b/a
tương tự: 1+1/b= 2+a/b
nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)
áp dụng bđt cô si a/b+b/a >=2 =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)
Lại có:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)
\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)
\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác )