Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(A=\frac{a+1}{a^2+a+1}-\frac{b+1}{b^2+b+1}=\frac{\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}\)
Xét tử: \(T=\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)=ab^2-ba^2+ab-ba+a-b+b^2-a^2+b-a+1-1\)
\(=ab\left(b-a\right)+\left(a-b\right)+\left(b^2-a^2\right)-\left(a-b\right)\)
\(=ab\left(b-a\right)+\left(b-a\right)\left(b+a\right)=\left(b-a\right)\left(ab+a+b\right)< 0\), do a>b>0
Vậy A<0
Hay: \(\frac{a+1}{a^2+a+1}< \frac{b+1}{b^2+b+1}\)
From \(a>b\Rightarrow a^2>b^2\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow\frac{1+a}{a^2+a+1}< \frac{1+b}{b^2+b+1}\)\(\Rightarrow x< y\)
lí luận tạm thời nên có thể chưa chặt chẽ
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
a. Đề:\(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
Giải :\(\Rightarrow\hept{\begin{cases}2x-1=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=0+1=1\\3y=0-5=-5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{5}{3}\end{cases}}}\)
b. Đề : \(x^2+y^2-2x+10y+26=0\)
Giải : \(\Leftrightarrow x^2-2.1.x+1+y^2+2.5.y+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0+1=1\\y=0-5=-5\end{cases}}}\)
Đây là bài 1 bài 2 đang ghi nha
t i c k nha cảm ơn
Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)
\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)
=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)
=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)
=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)
Vì \(a>b=>ab.a>ab.b;a^2>b^2\)
=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)
=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)
=>m:n>1
=>m:n
=>1-x>y-y
=>x<y
Vậy x<y