Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
a, Ta có: \(2a+b⋮13\Rightarrow2.\left(2a+b\right)⋮13\Rightarrow4a+2b⋮13\)
Mà \(5a-4b⋮13\) \(\Rightarrow\left(5a-4b\right)-\left(4a+2b\right)⋮13\Rightarrow5a-4b-4a-2b⋮13\)
\(\Rightarrow a-6b⋮13\) (đpcm)
Vậy...
b, Ta có: \(98⋮7\Rightarrow98a⋮7\). Mà \(100a+b⋮7\Rightarrow\left(100a+b\right)-98a⋮7\Rightarrow100a+b-98a⋮7\)
\(\Rightarrow2a+b⋮7\Rightarrow4.\left(2a+b\right)⋮7\Rightarrow8a+4b⋮7\)
Mặt khác \(7a⋮7\Rightarrow8a+4b-7a⋮7\Rightarrow a+4b⋮7\) (đpcm)
Vậy...
b, Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
Mà \(11\left(a+b\right)⋮11\Rightarrow11a+11b⋮11\)
\(\Rightarrow\left(12a+16b\right)-\left(11a+11b\right)⋮11\Rightarrow12a+16b-11a-11b⋮11\)
\(\Rightarrow a+5b⋮11\) (đpcm)
Vậy...
\(3a+4b\) chia hết cho 11
\(\Leftrightarrow3a+4b+11b\) chia hết cho 11 (vì 11b chia hết cho 11)
\(\Leftrightarrow3a+15b\) chia hết cho 11
\(\Leftrightarrow3\left(a+5b\right)\) chia hết cho 11
Mà (3;11)=1
=>a+5b chia hết cho 11
=>đpcm
Cách làm tương tự: Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath