Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
dự đoán của chúa Pain a=b=3
áp dụng BDT cô si dạng " Senpou" ta có
lưu ý dạng " Senpou" ko có trong sách giáo khoa
và chỉ được sử dùng khi trong tình thế nguy cấp như . thể hiện . tán gái ...., và chỉ lừa được những thằng ngu :)
ko nên dùng trc mặt thầy cô giáo
\(27=a^2+b^2+ab\ge3\sqrt[3]{a^2b^2ab}=3ab.\)
\(a^3+b^3+3^3\ge3\sqrt[3]{a^3b^3.3^3}=9ab\)
mà \(3ab\le27\Leftrightarrow9ab\le27.3=81\)
suy ra
\(a^3+b^3+3^3\ge81\Leftrightarrow a^3+b^3\ge81-27=54\)
dấu = xảy ra khi a=b=3
theo bđt bu-nhi-acop-xki cho 3 số :\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2.\) Ta có:
\(3P=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2\Leftrightarrow3P\ge2010^2\Leftrightarrow P\ge1346700\)
Dấu "=" xảy ra khi a=b=c=670
=> Min P=1346700
đặt \(A=\sqrt{a^2+b^2}\) ad cosi: \(ab\le\frac{a^2+b^2}{2}\)=\(\frac{A^2}{2}\)
ad bunhia copxki \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)=2A^2 nên \(a+b\le\sqrt{2}A\)
=>\(\frac{A^2}{2}+\sqrt{2}A\ge3\)=>\(A^2+2\sqrt{2}A\ge6=>\left(A+\sqrt{2}\right)^2\ge8\)
\(=>A+\sqrt{2}\ge2\sqrt{2}=>A\ge\sqrt{2}\)nên \(a^2+b^2\ge2\)
dấu = xr <=>a=b=1