Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)
ddd
*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)
Nên c2≡2(mod3)c2≡2(mod3) (Vô lí)
Nên Tồn tại ab⋮3ab⋮3
*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4
Vậy từ 2 TH trên có đpcmcdvm
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}}\)
\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Với \(a-b=1\)
\(\Rightarrow A=1.\left(13+6\right)=19\)
Với \(a-b=-1\)
\(\Rightarrow A=-1\left(13+6\right)=-19\)
Vậy \(\orbr{\begin{cases}A=19\\A=-19\end{cases}}\)
b ) \(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a+b=5\\a+b=-5\end{cases}}\)
\(B=a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Với \(a-b=1;a+b=5\Rightarrow B=1.5=5\)
Với \(a-b=1;a+b=-5\Rightarrow B=1.-5=-5\)
Tương tự với \(\hept{\begin{cases}a-b=-1;a+b=-5\\a-b=-1;a+b=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}B=5\\B=-5\end{cases}}\)
Vậy ...
Chúc bạn học tốt !!!
Làm lại :
a ) Do \(a>b>0\)
\(\Rightarrow a-b>0\)
\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)
\(\Rightarrow a-b=1\)
\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow A=1.\left(13+6\right)=19\)
Vậy \(A=19\)
b ) \(B=a^2-b^2=\left(a-b\right)\left(a+b\right)=1\left(a+b\right)=a+b\)
Do \(a>b>0\Rightarrow a+b>0\)
\(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)
\(\Rightarrow a+b=5\)
Mà \(B=a+b\)
\(\Rightarrow B=5\)
Vậy \(B=5\)
Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé
Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)
Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)
Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)
<=> \(ab\le1\)
<=> \(1-ab\ge0\)
Suy ra P = 2018 - 2018ab = 2018(1 - ab) \(\ge0\)
\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\) với \(a,b\in R\)
nếu \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) thì \(P=2018>0\)
nếu \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\) thì xảy ra 2 trường hợp như sau
\(TH1\)\(a,b\) trái dấu \(\Rightarrow P>0\)
\(TH2\) \(a,b\) cùng dấu
vì \(2.a^{2018}.b^{2018}>0\forall a,b\)
\(\Rightarrow a^{2017}+b^{2017}>0\) để 2 đẳng thức tồn tại dấu \("="\)
\(\Rightarrow a,b>0\) ( cùng dương)
có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)
\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab>2018-2018=0\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
vậy \(P\) luôn không âm
Ta có:\(a+b=2\)\(\Rightarrow a=2-b\)
Có:\(a.b=-2\)
\(\Rightarrow\left(2-b\right).b=-2\)
\(\Rightarrow2b-b^2=-2\)
\(\Rightarrow2b-b^2+2=0\)
\(\Rightarrow b^2-2b-2=0\)
\(\Rightarrow b^2-2b+1-3=0\)
\(\Rightarrow b^2-2b+1=3\)
\(\Rightarrow\left(b-1\right)^2=3\)
\(\Rightarrow\orbr{\begin{cases}b-1=\sqrt{3}\\b-1=-\sqrt{3}\end{cases}\Rightarrow\orbr{\begin{cases}b=\sqrt{3}+1\\b=-\sqrt{3}+1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}a=2-b=2-\left(\sqrt{3}+1\right)=1-\sqrt{3}\\a=2-b=2-\left(-\sqrt{3}+1\right)=1+\sqrt{3}\end{cases}}\)
Vậy \(\left(a;b\right)=\orbr{\begin{cases}\left(1-\sqrt{3};1+\sqrt{3}\right)\\\left(1+\sqrt{3};1-\sqrt{3}\right)\end{cases}}\)