K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

a) Vì a>b

=>3a>3b

=>5-3a<5-3b

c) vì a>b

=>8a>8b

=>8a-3>8b-3

c) vì a>b

=>8a>8b

Vì 3<5

=>8a-3<8b-5

6 tháng 4 2023

a)

`a<b`

`<=>3a<3b`

`<=>3a-5<3b-5`

b)

`a<b`

`<=>-8a> -8b`

`<=>-8a-3> -8b-3`

c)

`a<b`

`<=>4a<4b`

`<=>4a+9<4b+9`

mà `4a-7<4a+9`

`<=>4a-7<4b+9`

18 tháng 4 2018

a>b

a>b

a>b

a<b

16 tháng 12 2016

có thể là bé hơn hoặc bằng,các bạn thử cho mình với nhé

17 tháng 8 2020

áp dụng Bất Đẳng Thức CBS \(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(a+4b\right)\left(3a+2b\right)}\le\frac{1}{2}\left(4a+6b\right)\)

(BĐT CBS) do đó ta \(\Rightarrow\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\)

tương tư với mẫu còn lại 

\(\Rightarrow\Sigma\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\Sigma\frac{a^2}{2a+3b}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\left(Q.E.D\right)\)

đẳng thức xảy ra khi a=b=c

26 tháng 2 2019

Đặt PT đã cho ở đề là A

Ta có : \(\sqrt{3a^2+8b^2+14ab}=\sqrt{3a\left(a+4b\right)+2b\left(a+4b\right)}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\)

\(\le\dfrac{3a+2b+a+4b}{2}=\dfrac{4a+6b}{2}=2a+3b\)

\(\Rightarrow\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\dfrac{a^2}{2a+3b}\)

Làm tương tự như trên , ta có :

\(\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}\ge\dfrac{b^2}{2b+3c};\dfrac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\dfrac{c^2}{2c+3a}\)

Nên : \(A\ge\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\dfrac{5}{a+b+c}\left(đpcm\right)\)

26 tháng 2 2019

\(\dfrac{a+b+c}{5}\)

8 tháng 12 2017

Chứng minh BĐT phụ: \(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\) với \(x;y>0\)         (*)

Ta có: \(3a^2+8b^2+14ab\)

\(=\left(3a^2+12ab\right)+\left(2ab+8b^2\right)\)

\(=3a\left(a+4b\right)+2b\left(a+4b\right)\)

\(=\left(3a+2b\right)\left(a+4b\right)\)

\(\Rightarrow\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le\frac{3a+2b+a+4b}{2}=2a+3b\)

\(\Rightarrow\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\)

Tương tự, ta có:  \(\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}\ge\frac{b^2}{2b+3c}\)

                           \(\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{c^2}{2c+3a}\)

Áp dụng (*), ta có:

\(VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}\)

                                                                                         \(=\frac{1}{5}\left(a+b+c\right)\)

Vậy \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{1}{5}\left(a+b+c\right)\)

Bài 1

Gọi số học sinh lớp 8A là x (học sinh) ĐK: x ∈ N* và x < 80 

Số học sinh lớp 8B là 80 - x(học sinh) 

Số sách lớp 8A ủng hộ là 2x (quyển) 

Số sách lớp 8B ủng hộ là 3(80 - x) (quyển) 

Theo bài ta có phương trình: 

<=>2x + 3(80 - x) = 198 

<=>2x + 248 - 3x = 198 

x = 42 (thoả mãn điều kiện) Vậy số học sinh lớp 8A là 42 học sinh,số học sinh lớp 8B là 38 học sinh.

Bài 2

Gọi độ dài quãng đường AB là x (km)      (ĐK: x > 0) 

Thời gian lúc đi là: x/35 (giờ), thời gian lúc về là : x/42 (giờ).

Theo bài ra ta có phương trình: x/35 - x/42 = 1/2

Giải phương trình được x = 105, thoả mãn điều kiện của ẩn. Trả lời : Vậy độ dài quãng đường AB là 105 km.

Hok tốt ^^

Bài 1: Gọi x (h/s) là số h/s của lớp 8A (0 < x < 80 ). Số h/s của lớp 8D là: 80 - x

Số cách lớp 8a ủng hộ là 2x (quyển); số sách lớp 8D ủng hộ là 3(80 - x) (quyển)

Theo đề bài 2 lớp góp đc 198 nên ta có phương trình: 2x +3(80 - x) = 198 

<=> 2x + 240 - 3x = 198 => x = 42 (h/s) (TMĐK) => Số h/s lớp 8A là: 42 h/s 

Số h/s lớp 8D là: 80 - x = 80 - 24 = 56 (h/s) 

Bài 2: Gọi t(h) là thời gian đi (t > 0,5) - quãng đường AB (tính theo lúc đi) 35t 

                                                            - quãng đường AB (tính theo lúc về) 42(t - 0,5) 

Ta có phương trình: 35t = 42(t - 0,5) giải phương trình: 35t = 42(t-0,5) 

                                                                                        <=> 35t = 42t - 21 <=> -7t = -21 <=> t = 3

=> Quãng đường AB dài là: 35.3 = 105 (km)