Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Giả sử d là ước nguyên tố của ab và a+b.
=> ab chia hết cho d và a+b chia hết cho d.
Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)
Do vai trò của a và b bình đẳng nên:
Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)
=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1
=> d=1(trái với d là số nguyên tố)
Do đó ab và a+b không thể có ước nguyên tố chung.
=> ƯCLN(ab,a+b)=1
Vậy ƯCLN(ab,a+b)=1
Giả sử \(d\) là ước nguyên tố của \(ab\) và \(a+b\).
\(\Rightarrow\) \(ab⋮d\) và \(a+b⋮d\)
Vì \(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)
Do vai trò của \(a\) và \(b\) bình đẳng nên:
Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))
\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)
\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)
Do đó \(ab\) và \(a+b\) không thể có ước nguyên tố chung.
\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)
Vậy \(ƯCLN\left(ab,a+b\right)=1\)
Giải
Giả sử d là ước nguyên tố của ab và a+b.
=> ab chia hết cho d và a+b chia hết cho d.
Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)
Do vai trò của a và b bình đẳng nên:
Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)
=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1
=> d=1(trái với d là số nguyên tố)
Do đó ab và a+b không thể có ước nguyên tố chung.
=> ƯCLN(ab,a+b)=1
Vậy ƯCLN(ab,a+b)=1
tick nha!
Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)
\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)
Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)
Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)
Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)
\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra
Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)
Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau
\(\left(a.b,a+b\right)=1\)( đpcm )
/ Sai thì bỏ qua nha Hiro /
Gọi d=UCLN(a;b)
=> Tồn tại 2 số nguyên m;n sao cho
a=md và b=nd
ta có
a+b=md+nd=d(m+n)=p\(\Rightarrow p⋮d\) mà p là số nguyên tố nên d=1
=> a và b nguyên tố cùng nhau