K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

* Chứng minh \(4^a+a+b\equiv0\left(mod2\right)\)

Ta có:

\(a+1+b+2007=a+b+2008\equiv a+b\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+a+b\equiv0\left(mod2\right)\)

* Chứng minh \(4^a+a+b\equiv0\left(mod3\right)\)

Ta có:

\(a+1+b+2007=a+b+2008\equiv1+a+b\equiv0\left(mod3\right)\)

\(\Rightarrow a+b\equiv2\left(mod3\right)\)

\(\Rightarrow4^a+a+b\equiv1+a+b\equiv1+2\equiv0\left(mod3\right)\)

Vì 2, 3 nguyên tố cùng nhau nên \(4^a+a+b\equiv0\left(mod6\right)\)

30 tháng 7 2018

bài này không đúng với \(a=5\) bn à