Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a, b là các số tự nhiên không chia hết cho 5
=> Chữ số cuối cùng các số a, b có thể là 1, 2, 3, 4, 6, 7, 8,9
mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...
=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6
=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6
=> Chữ số tận cùng các số a^4m -1 và b^4m -1 là 0 hoặc 5
=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)
=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5
Hoặc nếu em đã được học kiến thức đồng dư:
a, b là các số không chia hết cho 5
=> a^4 , b^4 có chữ số tận cùng là 1, 6
=> a^4m, b^4m có chữ số tận cùng 1, 6
=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)
cho a là stn gồm 13 chữ số 2, b là stn gồm 19 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
Ta có: \(a=222...2\)(13 chữ số)
\(\Rightarrow\) Tổng các chữ số của a là: \(2.13=26\) chia 3 dư 2
\(\Rightarrow a\equiv2\left(mod3\right)\left(1\right)\)
Ta có: \(b=111...1\)(19 chữ số 1)
=> Tổng các chữ số của b là: \(1.19=19\) chia 3 dư 1
\(\Rightarrow b\equiv1\left(mod3\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow ab-5\equiv1.2-5\left(mod3\right)\)
\(\Rightarrow ab-5\equiv-3\left(mod3\right)\)
\(\Rightarrow ab-5⋮3\)
a=\(2^{13}=8192;b=1^{19}=1\)
áp dụng dấu hiệu chia hết cho 3
ta có: ab-5=\(8912\cdot1-5=8907\)
mà 8+9+0+7=24 ⋮3
suy ra ab-5⋮3
1 tick đc r
có sai thì bỏ qua ạ
cho cac chu so 0,2,4,6,8
co bao nhieu so co 3 chu so duoc viet boi cac chu so da cho
cac chu so co the lap lai o moi so
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45