K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
L
0
NT
20 tháng 11 2014
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{a+c+d}+\frac{d}{a+b+d}\)>\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)=1(vì a,b,c,d là các số dương)
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{a+c+d}+\frac{d}{a+b+d}\)=\(\left(\frac{a}{a+b+c}+\frac{c}{a+c+d}\right)\left(\frac{b}{b+c+d}+\frac{d}{a+b+d}\right)\)<\(\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{b+d}\right)\)=2
12 tháng 3 2017
Bạn Nguyễn Tư Thành Nhân quên dấu cộng ở phần \(\left(\frac{a}{a+b+c}+\frac{c}{a+c+d}\right)+\left(\frac{b}{b+c+d}+\frac{d}{d+a+b}\right)\)
NV
0
vì giá trị tuyệt đối của a-b lớn hơn hoặc bằng 0 mà gttd a-b<1 => a-b=0 => a=b
từ đó a/b+b/a=2<3(dpcm)