Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow VT\ge3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\)
Chứng minh : \(3\sqrt[6]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\ge3\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+a+ab+bc\right)^2}{4}\)
\(=\frac{\left[b\left(a+c\right)+c+a\right]^2}{4}=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Thiết lập tương tự và thu lại ta có :
\(\Rightarrow\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a^2\right)\left(b+1\right)^2\left(a+1\right)^2\left(c+1\right)^2}{64}\)
\(\Rightarrow64\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\)
\(\le\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\left(b+1\right)^2\left(c+1\right)^2\left(a+1\right)^2\)
\(\Leftrightarrow8\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+1\right)\left(c+1\right)\left(a+1\right)\)
Cần chứng minh :
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{3+3}{3}\right)^3=8\left(đpcm\right)\)
Chúc bạn học tốt !!!!
\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)
Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (Dấu "=" xảy ra khi và chỉ khi x = y) (Có thể chứng minh bằng biến đổi tương đương)
Được : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy Min P = \(\sqrt{2}\)\(\Leftrightarrow a=b=\sqrt{2}\)
P = ab + \(\frac{a-b}{\sqrt{ab}}\)
Thay a - b = \(\frac{a+b}{\sqrt{ab}}\)vào P
=> P = ab + \(\frac{a+b}{\sqrt{ab}\sqrt{ab}}\)
= ab + \(\frac{a+b}{ab}\)>= 2\(\sqrt{a+b}\)
Làm tiếp cứ đi vòng vòng mà không có lối ra.
Theo bài có : \(\sqrt{ab}=\frac{a+b}{a-b}\) (1) nên suy ra : \(\frac{a+b}{a-b}\ge0\)
Mà a+b > 0 do a,b là số thực dương nên suy ra : a-b > 0 hay a > b
Có : \(\sqrt{ab}=\frac{a+b}{a-b}\)
\(\Leftrightarrow\)ab = \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}\)=\(\frac{\left(a-b\right)^2+4ab}{\left(a-b\right)^2}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\)
Ta có : P = ab + \(\frac{a-b}{\sqrt{ab}}\)= \(1+\frac{4ab}{\left(a-b\right)^2}\) + \(\frac{a-b}{2\sqrt{ab}}\)+ \(\frac{a-b}{2\sqrt{ab}}\) \(\ge\)4\(\sqrt[4]{1.\frac{4ab}{\left(a-b\right)^2}.\frac{a-b}{2\sqrt{ab}}.\frac{a-b}{2\sqrt{ab}}}\)= 4\(\sqrt[4]{1}\)= 4 ( theo BĐT Cô -si)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a-b}{2\sqrt{ab}}=1\\\frac{a-b}{2\sqrt{ab}}=\frac{4ab}{\left(a-b\right)^2}\\\frac{4ab}{\left(a-b\right)^2}=1\end{cases}}\) \(\Leftrightarrow a=b.\left(\sqrt{2}+1\right)^2\)
Thay a = b.\(\left(\sqrt{2}+1\right)^2\)vào (1) rồi tính ra ta được :\(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\left(thỏamãn\right)\)
Vậy P min = 4 đạt được khi \(\hept{\begin{cases}a=2+\sqrt{2}\\b=2-\sqrt{2}\end{cases}}\)