\(\frac{a^2+b^2}{2}\ge(\frac{a+b}{2})^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bđt\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(luôn đúng do bđt bunhia copxki)

5 tháng 5 2019

Ta có: \(\left(a-b\right)^2\ge0,\forall x\)

\(\Leftrightarrow a^2-2ab+b^2\ge0,\forall x\)

\(\Leftrightarrow a^2+b^2\ge2ab,\forall x\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\left(đpcm\right)\)

16 tháng 3 2020

áp dụng BĐT sacxo nên \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

15 tháng 10 2017

Đặt \(b+c=x;a+c=y;a+b=z\)

Áp dụng bđt Bunhiacopxki ta có :

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2\)

\(\Leftrightarrow\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

15 tháng 10 2017

Áp dụng S-vác-sơ, ta có

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}\)

                                                     \(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

19 tháng 5 2019

\(\frac{a^2+b^2}{2}\ge ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Luôn đúng với mọi a và b

19 tháng 5 2019

Ta có:

     \(\left(a-b\right)^2\ge0\)

       <=>\(\left(a-b\right)\cdot\left(a-b\right)\ge0\)

       <=>\(\left(a^2-2ab+b^2\right)\ge0\)

       <=>\(\left(a^2+b^2\right)\ge2ab\)

       <=>\(\frac{a^2+b^2}{2}\ge ab\)(đpcm)

Vậy với 2 số a,b bất kì ta có \(\frac{a^2+b^2}{2}\ge ab\)

4 tháng 4 2019

Bạn ơi , bao giờ giáo viên của bạn chữa cho bạn bài này thì cho mình xin lời giải nhé , mình cám ơn ạ !

6 tháng 4 2019

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)

\(\frac{b^2}{a^2+c^2}-\frac{b}{a+c}=\frac{ab\left(b-a\right)+bc\left(b-c\right)}{\left(a^2+c^2\right)\left(a+c\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)

Cộng các vế ta có:

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+c^2\right)\left(a+c\right)}\right]\)\(+ac\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a^2+c^2\right)\left(a+c\right)+}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

Giả sử \(a\ge b\ge c>0\)thì

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)>0\)

=> \(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Dấu " = " xảy ra <=> a=b=c

24 tháng 4 2020

Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))

Violympic toán 8

23 tháng 4 2020

Ý em là câu b ý, câu a em chịu :v

16 tháng 4 2020

\(\frac{a^2+b^2}{2}\ge ab\)(1)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2+b^2-2ab\ge0\)

<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì 

Vậy (1) đúng với mọi a, b  bất kì

Y
14 tháng 4 2019

a) \(a\le b\) \(\Rightarrow-a\ge-b\)

\(\Rightarrow-\frac{2}{3}a\ge-\frac{2}{3}b\) ( theo liên hệ giữa thứ tự và phép nhân )

\(\Rightarrow-\frac{2}{3}a+4\ge-\frac{2}{3}b+4\)

b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

26 tháng 2 2020

Áp dụng BDT Svacxo ta có :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Cách khác sử dụng Cosi : Dự đoán điểm rơi và ghép hợp lí !

26 tháng 2 2020

Áp dụng bất đẳng thức cô - si với hai số dương:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

\(\frac{b^2}{c+a}+\frac{a+c}{4}\ge b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)

=> => \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

Dâu "=" xảy ra <=> a = b = c