K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2021

\(2ab+a+b=2a^2+2b^2\ge2ab+\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)

\(F=\dfrac{a^4}{ab}+\dfrac{b^4}{ab}+2020\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2ab}+\dfrac{8080}{a+b}\ge a^2+b^2+\dfrac{8080}{a+b}\)

\(F\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{8080}{a+b}=\dfrac{\left(a+b\right)^2}{2}+\dfrac{4}{a+b}+\dfrac{4}{a+b}+\dfrac{8072}{a+b}\)

\(F\ge3\sqrt[3]{\dfrac{16\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{8072}{2}=...\)

19 tháng 7 2020

cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O

19 tháng 7 2020

bạn Phạm Thị Thúy Phượng gửi nhầm bài rồi 

20 tháng 9 2021

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

\(\dfrac{1}{2a+b+c}=\dfrac{1}{4}.\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)

CMTT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\\\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{2}{2a}+\dfrac{2}{2b}+\dfrac{2}{2c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}.4=1\)

\(minM=1\Leftrightarrow a=b=c=\dfrac{3}{4}\)

 

 

20 tháng 9 2021

Sửa lại \(minM=1\rightarrow maxM=1\)

19 tháng 5 2022

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

21 tháng 8 2021

\(Q=\dfrac{2002}{a}+\dfrac{2017}{b}+2996a-5501b=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-\left(5012a+7518b\right)\)

\(=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-2506\left(2a+3b\right)\)

Áp dụng bất đẳng thức Cosi cho 2 số dương:

\(\left\{{}\begin{matrix}\dfrac{2002}{a}+8008\ge2\sqrt{\dfrac{2002}{a}.8008}=8008\\\dfrac{2017}{b}+2017b\ge2\sqrt{\dfrac{2017}{b}.2017b}=4034\end{matrix}\right.\)

Ta có: \(2a+3b=4\Rightarrow-\left(2a+3b\right)=-4\Leftrightarrow-2506\left(2a+3b\right)=-10024\)

\(\Rightarrow Q\ge8008+4034-10024=2018\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

 

24 tháng 12 2021

Khúc đầu là: \(\dfrac{1}{a^4+b^2+2b^2}\) hay \(\dfrac{1}{a^4+b^2+2ab^2}\) ??

24 tháng 12 2021

\(2a^2b\) không phải \(2ab^2\)