K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

$\frac{6}{b}=5-a; \frac{4}{a}=4-b$ nguyên với mọi $a,b$ nguyên.

Do đó: $b$ là ước của $6$ và $a$ là ước của $4$

Nếu $a=1$ thì $b=0$ (vô lý- loại)

Nếu $a=-1$ thì $b=8$ (vô lý)

Nếu $a=2$ thì $b=2$ (thỏa mãn cả 2 điều kiện)

Nếu $a=-2$ thì $b=6$ (không thỏa đk số 1)

Nếu $a=4$ thì $b=3$ (không thỏa đk số 1)

Nếu $a=-4$ thì $b=5$ (không thỏa)

Vậy $a=b=2$

$\Rightarrow a+b=4$

 

21 tháng 2 2016

Ta chứng minh: 4a chia 6 dư 4(1)

-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)

Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4

Ta có: 4k chia 6 dư 4

=>4k đồng dư với 4(mod 6)

=>4k.4 đồng dư với 4.4(mod 6)

=>4k+1 đồng dư với 16(mod 6)

=>4k+1 đồng dư với 4(mod 6)

=>4k+1 chia 6 dư 4

=>thỏa mãn

=>Phép quy nạp đã được chứng minh=>ĐPCM

=>4a chia 6 dư 4

=>4a-4 chia hết cho 6

Lại có: a+1, b+2007 chia hết cho 6

=>a+1+ b+2007 chia hết cho 6

=>a+ b+2008 chia hết cho 6

=>a+b+4+2004 chia hết cho 6

mà 2004 chia hết cho 6

=>a+ b+4 chia hết cho 6

mà 4a-4 chia hết cho 6

=>4a-4+a+b+4 chia hết cho 6

=>4a+a+b chia hết cho 6

Vậy 4a+a+b chia hết cho 6

21 tháng 2 2016

Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn

\(\Rightarrow\) a+1,b+2007/chia hết cho 2

\(\Rightarrow\)a+1,b+2007/chia hết cho 6

Điều nói trên trái với giả thiết.

Vậy a,b luôn lẻ.

Do đó:41+MỘTchia hết+2.b

Ta có:một + 1,b+chia hết 2007

\(\Rightarrow\)a+1+b+2007 chia hết cho 6

\(\Rightarrow\)(một +b+1)chia hết+3.2007

\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)

Ta thấy41+Một+b=(41-1)+(một +b+1)

Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)

Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3

Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6 

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số...
Đọc tiếp

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....

2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....

3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =

4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN

5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số (2n+7)/(5n+2)

6)Tìm phân số bằng phân số a/ab, biết rằng phân số đó bằng phân số 1/6a.

7)Cho phân số a/b khác 0 tối giản. Biết rằng nếu cộng tử vào tử, cộng tử vào mẫu thì được phân số bằng nửa phân số đã cho. Tính a-b

8) Cho x,y nguyên thỏa mãn 2/(x^2+y^2+3); 3/(x^2+y^2+4);...; 18/(x^2+y^2+19) là các phân số tối giản. Tổng của x^2 và y^2 nhỏ nhất có thể là...

9)Có ... STN n thỏa mãn giá trị phân số (n+10)/(2n-8) nguyên

10)Cho phân số A= (23+22+21+...+13)/(11+10+9+...+1). Có tất cả ... cách xóa một số hạng ở tử và một số hạng ở mẫu của A để được một phân sô mới có giá trị bằng A

1
10 tháng 3 2016

Cau 1 : 2 !nhe bn hien

10 tháng 11 2019

\(\frac{a}{3}-\frac{4}{b}=\frac{1}{5}\)

\(\Leftrightarrow\frac{ab-12}{3b}=\frac{1}{5}\)

\(\Leftrightarrow5ab-60-3b=0\)

Đến đây ko giải ra dc chắc sai đề hay nhầm đâu đó hoặc chơi nhầm hướng

10 tháng 11 2019

Tiếp tục:

\(b\left(5a-3\right)=60\Rightarrow b=\frac{60}{5a-3}\)

Do b nguyên \(\Rightarrow5a-3=Ư\left(60\right)=...\) một nùi giải mỏi tay luôn

23 tháng 12 2019

Ta có :\(\frac{a}{3}-\frac{4}{b}=\frac{1}{5}\)

=> \(\frac{ab-12}{3b}=\frac{1}{5}\)

=> 5ab - 60 = 3b

=> 5ab - 3b = 60

=> b(5a - 3) = 60 

Đến đây bạn tự lập bảng xét các trường hợp 

12 tháng 4 2019

3/Câu hỏi của không tên - toán 8 :)

12 tháng 4 2019

bạn nào xàm dữ :((

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0