K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)  (\(k\in N\)*) 

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk-3b}{2bk+3b}=\frac{2dk-3d}{2dk+3d}\)

Xét vế trái \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{b\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)

Xét vế phải \(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{d\left(2k-3\right)}{d\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)

Từ (1) và (2) ta có Đpcm

22 tháng 9 2019

Đặt ab=cd=kab=cd=k (k∈Nk∈N*)

⇒{a=bkc=dk⇒{a=bkc=dk⇒2bk−3b2bk+3b=2dk−3d2dk+3d⇒2bk−3b2bk+3b=2dk−3d2dk+3d

Xét vế trái 2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)

Xét vế phải 2c−3d2c+3d=2dk−3d2dk+3d=d(2k−3)d(2k+3)=2k−32k+3(2)ok

5 tháng 7 2019

a, a/b = c/d => a/c=b/d ( đây là tính chất tỉ lệ thức đó )

Khi đó lại áp dụng tính chất dãy tỉ số bằng nhau : a/c = b/d = a+b/c+d = a-b/c-d

Từ riêng cắp a+b/c+d=a-b/c-d vừa CM đc ở trên => a+b/a-b=c+d/c-d ( lại tính chất tỉ lệ thức nè )

Xong phần a nhé ^^

5 tháng 7 2019

b, Phần a đã suy ra đc cặp a/c=b/d rồi đúng ko ?

Đặt a/c=b/d=k thì a=ck và b=dk

Khi đó 2a-3b/2a+3b=2ck-3dk/2ck+3dk= k.(2c-3d)/k.(2c+3d)  ( Đặt k ra ngoài để nhóm)

                                                             = 2c-3d/2c+3d (Triệt tiêu k ở cả tử và mẫu)

Thế là xong nha ^^ thắc mắc gì nhắn hỏi riêng nhé :vv

22 tháng 10 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)

\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)

Do đó: \(\dfrac{a-b}{c-d}=\dfrac{2a-3b}{2c-3d}\)

25 tháng 7 2022

Đại tướng lận kia kìa

 

E=(-a-b+c+d)-(d+c-b-2a)

E=-a-b+c+d-d-c+b+2a

E=-a+(-)b+c+d+(-d)+(-c)+b+2a

E=-a+(-b)+c+d+(-d)+(-c)+b+2a

E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a

8 tháng 2 2017

thanks nhiều nha ĐỨC THỊNH

26 tháng 11 2016

đặt  \(\frac{a}{b}=\frac{b}{c}=k\left(k\notin0\right)\)

ta có \(a=k.b,b=k.c\) 

thay số vào rùi tính là ra

31 tháng 12 2020

A =(a+b-2c) -(-a+b+c) -(2a-b-c)

   = a+b-2c+a-b-c-2a+b+c

   = b-2c

B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)

  = -2a+b-c+b-2c-3a+5a+3c-b

  = b-c

C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)

  = a-b-2c-2b-3c+a+2a-3b

  = -6b-5c

D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)

   = 5a-3b+c+2a-3b+5-b+c-a

   = 6a-7b+2c

1 tháng 1 2021

\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)

\(=a+b-2c+a-b-c-2a+b+c=b-2c\)

\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)

\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)

\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)

\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)

\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)

\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)

1 tháng 2 2018

4) 

a) x/5 = y/3

=> 3x = 5y

=> x/y = 5/3

=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6

=> (x;y) thuộc {(10;6)}

20 tháng 11 2017

Vt lại đề nhé (khó nhìn)

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)

Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)

Lần lượt thay vào các vế, ta được :

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)

\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)