Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a/b = c/d => a/c=b/d ( đây là tính chất tỉ lệ thức đó )
Khi đó lại áp dụng tính chất dãy tỉ số bằng nhau : a/c = b/d = a+b/c+d = a-b/c-d
Từ riêng cắp a+b/c+d=a-b/c-d vừa CM đc ở trên => a+b/a-b=c+d/c-d ( lại tính chất tỉ lệ thức nè )
Xong phần a nhé ^^
b, Phần a đã suy ra đc cặp a/c=b/d rồi đúng ko ?
Đặt a/c=b/d=k thì a=ck và b=dk
Khi đó 2a-3b/2a+3b=2ck-3dk/2ck+3dk= k.(2c-3d)/k.(2c+3d) ( Đặt k ra ngoài để nhóm)
= 2c-3d/2c+3d (Triệt tiêu k ở cả tử và mẫu)
Thế là xong nha ^^ thắc mắc gì nhắn hỏi riêng nhé :vv
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)
\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{a-b}{c-d}=\dfrac{2a-3b}{2c-3d}\)
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
đặt \(\frac{a}{b}=\frac{b}{c}=k\left(k\notin0\right)\)
ta có \(a=k.b,b=k.c\)
thay số vào rùi tính là ra
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
= a+b-2c+a-b-c-2a+b+c
= b-2c
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
= -2a+b-c+b-2c-3a+5a+3c-b
= b-c
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
= a-b-2c-2b-3c+a+2a-3b
= -6b-5c
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
= 5a-3b+c+2a-3b+5-b+c-a
= 6a-7b+2c
\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)
\(=a+b-2c+a-b-c-2a+b+c=b-2c\)
\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)
\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)
\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)
\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)
\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)
\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
Vt lại đề nhé (khó nhìn)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)
Lần lượt thay vào các vế, ta được :
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)
\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (\(k\in N\)*)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk-3b}{2bk+3b}=\frac{2dk-3d}{2dk+3d}\)
Xét vế trái \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{b\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)
Xét vế phải \(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{d\left(2k-3\right)}{d\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
Đặt ab=cd=kab=cd=k (k∈Nk∈N*)
⇒{a=bkc=dk⇒{a=bkc=dk⇒2bk−3b2bk+3b=2dk−3d2dk+3d⇒2bk−3b2bk+3b=2dk−3d2dk+3d
Xét vế trái 2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)
Xét vế phải 2c−3d2c+3d=2dk−3d2dk+3d=d(2k−3)d(2k+3)=2k−32k+3(2)