K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
NH
0
PT
1
NT
0
17 tháng 8 2020
Đặt \(A=ab+bc+cd\le ab+ad+bc+cd=\left(a+c\right)\left(b+d\right)\)
Áp dụng bất đẳng thức \(xy\le\left(\frac{x+y}{2}\right)^2\) , ta có :
\(A\le\left(a+c\right)\left(b+d\right)\)
\(\Leftrightarrow A\le\left(\frac{a+b+c+d}{2}\right)^2=\left(\frac{63}{2}\right)^2=\frac{3969}{4}\)
Vậy Max \(A=\frac{3969}{4}\Leftrightarrow\hept{\begin{cases}a+c=\frac{63}{2}\\b+d=\frac{63}{2}\\a,b,c,d>0\end{cases}}\)
MB
0