Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Cho a, b, c > 0; a+b+c=3. Chứng minh
[(a+1):(b2+1)]+[(b+1):(c2+1)]+[(c+1):(a2+1)] lớn hơn hoặc bằng 3
\(VT=\Sigma_{cyc}\frac{a+1}{b^2+1}=\Sigma_{cyc}\left(\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\right)\)
\(=\left(a+b+c+3\right)-\Sigma_{cyc}\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge6-\Sigma_{cyc}\frac{b\left(a+1\right)}{2}=6-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b =c = 1
Is that true?
Vi a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 va cac hoan vi cua no
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
Ta co:
\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)
Ta di chung minh:
\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)
Dat \(t=a+b\left(t\ge2\right)\)
BDT can chung minh la:
\(\frac{t+2}{t^2}\le1\)
\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)
Dau '=' xay ra khi \(a=b=1\)
Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)
\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)
Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)
\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))
\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)
\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))
Dấu bằng xảy ra khi và chỉ khi a=b=1
a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1
a+b+c ít nhất phải bằng 3 chứ!
\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)
\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)
\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)
\(\Rightarrow P\ge1\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.