Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
...............
.................
\(a,a//b\Rightarrow\widehat{B_2}+\widehat{A_1}=180^0\left(trong.cùng.phía\right)\\ \Rightarrow\widehat{A_1}=180^0-40^0=140^0\\ b,a//b\Rightarrow\widehat{A_1}=\widehat{B_1}\left(đồng.vị\right)\\ Mà.\widehat{A_1}=\widehat{A_3}\left(đối.đỉnh\right)\\ \Rightarrow\widehat{A_3}=\widehat{B_1}\\ c,Ta.có.\widehat{A_2}+\widehat{B_1}=\widehat{A_2}+\widehat{A_1}=180^0\left(kề.bù\right)\)
A1=55o (đồng vị); A2=180o-55o=125o (kề bù với A1); A3=55o (đối đỉnh với A1); A4=125o (đối đỉnh với A2);
B2=125o (đồng vị với A2); B3=55o (đối đỉnh với B1); B4=125o (đối đỉnh với B2)
\(\widehat{B_1}\) = \(\widehat{B_2}\) = 1000 (hai góc đối đỉnh)
\(\widehat{C_2}\) = \(\widehat{B_1}\) = 1000 (hai góc đồng vị)
\(\widehat{C_3}\) + \(\widehat{C_2}\) = 1800 ⇒ \(\widehat{C_3}\) = 1800 - 1000 = 800
\(\widehat{D_1}\) = \(\widehat{A_1}\) = 600 (so le trong)
\(\widehat{DAH}\) = 900 - 600 = 300
Ta có: \(\widehat{B_1}+\widehat{B_2}=180^o\)(hai góc kề bù)
suy ra \(\widehat{B_2}+\frac{1}{2}\widehat{B_2}=\frac{3}{2}\widehat{B_2}=180^o\Leftrightarrow\widehat{B_2}=120^o\)
\(\widehat{B_1}=\frac{1}{2}\widehat{B_2}=120^o\div2=60^o\)
Có \(a//b\)nên \(\widehat{B_1}=\widehat{A_1}\)(hai góc so le trong)
suy ra \(\widehat{A_1}=60^o\)