K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 12 2021

Lấy \(I\)là trung điểm của \(AB\).

Khi đó \(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)

\(\overrightarrow{MA}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)=\overrightarrow{MI}.\overrightarrow{MI}+\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)+\overrightarrow{IA}.\overrightarrow{IB}\)

\(=MI^2-\frac{a^2}{4}=2a^2\Leftrightarrow MI^2=\frac{9}{4}a^2\)

Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{3a}{2}\).

23 tháng 11 2021

 

 

 Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:A. đường trung trực của đoạn ABB. đường tròn đường kính ABC. đường trung trực đoạn thẳng IAD. đường tròn tâm A, bán kính ABCâu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng...
Đọc tiếp

 

Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:

A. đường trung trực của đoạn AB

B. đường tròn đường kính AB

C. đường trung trực đoạn thẳng IA

D. đường tròn tâm A, bán kính AB

Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.

A. R = a/3

B. R = a/9

C. R = a/2

D. R = a/6

Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:

A. một đoạn thẳng

B. một đường thẳng

C. một đường tròn

D. một điểm

Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?

A.1

B.2

C.3

D. vô số

 

0
NV
18 tháng 8 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) (a>0 mới đúng, độ dài ko thể nhỏ hơn 0)

\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=a\)

\(\Leftrightarrow3\left|\overrightarrow{MG}\right|=a\) (do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\))

\(\Leftrightarrow MG=\dfrac{a}{3}\)

\(\Rightarrow\) Tập hợp M là đường tròn tâm G bán kính \(\dfrac{a}{3}\)

Chọn C

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Điểm \(M\left( {x;y} \right)\) thuộc đường tròn \(\left( C \right)\) tâm \(I\left( {a;b} \right)\), bán kính \(R\) khi và chỉ khi \(MI = R \Leftrightarrow \sqrt {{{(x - a)}^2} + {{(y - b)}^2}}  = R\) hay \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)

NV
8 tháng 9 2021

Chắc đề là: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=a\) ?

\(\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow\left|4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=a\)

\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=a\)

\(\Leftrightarrow MO=\dfrac{a}{4}\)

Tập hợp M là đường tròn tâm O bán kính \(\dfrac{a}{4}\)

30 tháng 5 2017

a) \(MA^2+MB^2=MC^2\)

\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)

\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)

\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)

Vậy tập hợp các điểm M là một đường tròn.

b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)