K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

BĐT <=> 2a\(^2\)+ 2b\(^2\)+2ab >= 12(a+b)

<=> (a+b)\(^2\)+a\(^2\)+b\(^2\) - 12(a+b) >=0

<=> (a+b)\(^2\) -12(a+b) + 36 + a\(^2\)+b\(^2\) >=36

<=> (a+b-6)\(^2\)+a\(^2\)+b\(^2\)>=36

với a,b>=4

=> a\(^2\)>= 16 , b\(^2\)>=16 , (a+b-6)\(^2\)>=4

=> BĐT được chứng minh

28 tháng 3 2016

nhân 4 vào 2 vế,,,cm tuong đương

4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)

áp dụng 2(a^2+b^2)>=(a+b)^2

=> đpcm

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

31 tháng 3 2018

Liên hệ giữa thứ tự và phép nhân

24 tháng 3 2018

Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2>2\left(đpcm\right)\)

13 tháng 4 2017

ta có: \(a^3+b^3-a^2b-ab^2>0\)*

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)>0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)>0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>0\) (đúng)

\(\Rightarrow\) BĐT * luôn đúng

13 tháng 4 2017

Ta có: \(a^3+b^3>a^2b+ab^2\) (*)

<=> \(a^3-a^2b+b^3-ab^2>0\)

<=> \(a^2\left(a-b\right)+b^2\left(b-a\right)>0\)

<=> \(\left(a-b\right)\left(a^2-b^2\right)>0\)

<=> \(\left(a-b\right)^2\left(a+b\right)>0\) (1)

(1) đúng => (*) đúng

18 tháng 4 2020

Bài làm

a) Đặt a3 + b3 - ab2 - a2b = 0

<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0

<=> ( a + b )( a2 + ab + b2 - ab ) = 0

<=> ( a + b )( a2 + b2 ) = 0          (1) 

Mà a2 + b2 > 0 

=> ( a + b )( a2 + b2 ) > 0            (2) 

Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0 

Vậy a3 + b3 - ab2 - a2> 0 ( đpcm )

b) Đặt a5 + b5 - a4b - ab4 = 0

<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0

<=> a4( a - b ) + b4( b - a ) = 0

<=> a4( a - b ) - b4( a - b ) = 0 

<=> ( a - b )( a4 - b4 ) = 0              (1) 

Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0

=> ( a - b )( a4 - b4 ) < 0                (2) 

Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0

Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )