
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A= (-2a + 3b -4c) - (-2a - 3b -4c)
A= -2a + 3b -4c + 2a + 3b + 4c
A=6b(Mà b=-1)
Suy ra:A=6.(-1)=-6
Vậy A=-6

a) Từ \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{2b\left(k-\frac{3}{2}\right)}{2b\left(k+\frac{3}{2}\right)}=\frac{k-\frac{3}{2}}{k+\frac{3}{2}}\left(1\right)\)
\(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{2d\left(k-\frac{3}{2}\right)}{2d\left(k+\frac{3}{2}\right)}=\frac{k-\frac{3}{2}}{k+\frac{3}{2}}\left(2\right)\)
Từ (1) và (2) => \(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\left(\text{đpcm}\right)\)
b) Ta có : \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2,\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(\text{đpcm}\right)\)

a) Ta có: \(a=\frac{3}{5}=0,6\)
\(A=\left(1^2+2^2+3^2+...+20^2\right).\left(a+b\right)\left(2a+b\right)\left(a+3b\right)\)
\(\Rightarrow A=\left(1^2+2^2+3^2+...+20^2\right)\left(a+b\right)\left(2a+b\right)\left[0,6+3.\left(-0,2\right)\right]\)
\(\Rightarrow A=\left(1^2+2^2+...+20^2\right)\left(a+b\right)\left(2a+b\right)\left(0,6-0,6\right)\)
\(\Rightarrow A=\left(1^2+2^2+...+20^2\right)\left(a+b\right)\left(2a+b\right).0\)
\(\Rightarrow A=0\)
Vậy A = 0
b) Ta có: \(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
\(B=\frac{2a-3b}{a-3b}=\frac{2.3.k-3.4.k}{3k-3.4.k}=\frac{6k-12k}{3k-12k}=\frac{\left(6-12\right)k}{\left(3-12\right)k}=\frac{-6}{-9}=\frac{2}{3}\)
Vậy \(B=\frac{2}{3}\)

a/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
\(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(dpcm\right)\)
b/
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{ab}=\frac{c^2}{cd}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{b^2}{d^2}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(dpcm\right)\)
\(\frac{a}{b}\)=\(2012^4\)
=>\(\frac{2a}{b}=2.2012^4\)
=>\(\frac{2a-3b}{b}=\frac{2a}{b}-\frac{3b}{b}=\frac{2a}{b}-3=2.2012^4-3\)
\(=\).......................
đây là đề bài của một bài toán ko dành cho lớp 6