Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
= \(a^2+a^2+2a+1+a^2\left(a^2+2a+1\right)\)=\(2a^2+2a+1+a^4+2a^3+a^2\)
=\(a^4+a^2+1+2\left(a^3+a^2+a\right)=\left(a^2+a+1\right)^2\)là SCP (đpcm)
a = 20042 + 20032 + 2002 - 20012
= ....6 + ..9 + ....0 -.... 1 = ....14 => Chữ số hàng chục là 1 (lẻ)
Khi a là SCP có chữ số tận cùng là 4 thì chữ số hàng chục phải là số chẵn
Vì vậy a không phải là SCP (đpcm)
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)