<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

liên quan

21 tháng 3 2021

Tìm Max của \(\frac{1}{a^3+ab+b^3}+\frac{4a^2b^2+1}{ab}\)

17 tháng 2 2017

\(M=\frac{1}{ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\)

\(=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\left(\frac{1}{a^2+ab}+\frac{1}{b^2+ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{\left(1+1\right)^2}{a^2+2ab+b^2}+\frac{\left(1+1\right)^2}{a^2+ab+b^2+ab}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge\frac{4}{1}+\frac{4}{1}+\frac{2}{1}=10\)

Dấu = xảy ra khi a = b = \(\frac{1}{2}\)

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

23 tháng 4 2017

A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)

B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)

áp dụng BĐT AM-GM

\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)

cộng 2 vế của BĐT cho nhau

\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)

C)tương tự câu B) ta có

\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)

cộng từng vế của BĐT ta có đpcm

11 tháng 10 2016

Ta có : \(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\)

\(\le1+\frac{a.b}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Tương tự , ta chứng minh được \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\right)\)

\(\frac{1}{1-ac}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\right)\)

Cộng theo vế : \(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

 

27 tháng 4 2017

Ta có: \(\left(a-1\right)^2\ge0\)

<=> \(a^2-2a+1\ge0\)

<=> \(a^2+1\ge2a\)

=> \(\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

Tương tự ta cm được: \(\dfrac{b}{b^2+1}\le\dfrac{1}{2}\) ; \(\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

=> P=\(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

dấu bằng sảy ra khi a=b=c=1

vậy PMAX = \(\dfrac{3}{2}\) khi a=b=c=1

30 tháng 11 2016

Câu 1: 4cm

Câu 2: 6cm

Câu 3: 90o

Câu 4: -108

Câu 5: 2

Câu 6: 14

Câu 7: 43

Câu 8: -1

Câu 9: -3

Câu 10: -26

4 tháng 12 2016

chỉ mình tính câu 1 với bạn?

19 tháng 11 2016

Evaluate the expression ?$x^3+12x+48x+64$ at ?$x=-4$

x3 + 12x + 48x + 64

= (x + 4)2

= (- 4 + 4)2

= 02

= 0

Fill in the blank: ?$x^3-$............?$=(x-2)(x^2+2x+4)$

x3 - a = (x - 2)(x2 + 2x + 4)

x3 - a = x3 - 8

a = 8

Fill in the blank: ?$(x-1)^3=x^3-3x^2+$?$x-1$
(x - 1)3
= x3 - 3x2 + 3x - 1
 
Fill in the blank: ?$(x+1)^3=x^3+$?$x^2+3x+1$
(x + 1)3
= x3 + 3x2 + 3x + 1

Evaluate ?$(a-b)^2$, given ?$a+b=8$ and ?$ab=10$.
Answer: ?$(a-b)^2=$

a + b = 8

(a + b)2 = 82

a2 + b2 + 2ab = 64

a2 + b2 + 2 . 10 = 64

a2 + b2 + 20 = 64

a2 + b2 = 64 - 20

a2 + b2 = 44

(a - b)2

= a2 - 2ab + b2

= 44 - 2 . 10

= 44 - 20

= 24
Given ?$A=(x-5)(x^2+5x+25)-x^2(x+3)+3x^2$.
Evaluate A at ?$x=1000$.
Answer: A?$=$

A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2

= x3 - 125 - x3 - 3x2 + 3x2

= - 125

Given ?$A=(x-5)(2x+1)-2x(x-3)+3x$.
Evaluate A at ?$x=100$.
Answer: A?$=$

A = (x - 5)(2x + 1) - 2x(x - 3) + 3x
= 2x2 + x - 10x - 5 - 2x2 + 6x + 3x
= - 5
Given a rectangle with dimension ?$(2x+y)$ by ?$(2x-y)$. Find the area of the rectangle when ?$x=\sqrt{10}m$ and ?$y=1m$.
Answer: ?$m^2$.
 
Given ?$ab=4$ and ?$a-b=5$. Evaluate ?$a^3-b^3$.
Answer: ?$a^3-b^3=$
a - b = 5
(a - b)2 = 52
a2 - 2ab + b2 = 25
a2 + b2 - 2 . 4 = 25
a2 + b2 - 8 = 25
a2 + b2 = 25 + 8
a2 + b2 = 33
a3 - b3
= (a - b)(a2 + ab + b2)
= 5 . (33 + 4)
= 5 . 37
= 185

Given ?$ab=4$ and ?$a+b=5$. Evaluate ?$a^3+b^3$.
Answer: ?$a^3+b^3=$
a + b = 5
(a + b)2 = 52
a2 + 2ab + b2 = 25
a2 + b2 + 2 . 4 = 25
a2 + b2 + 8 = 25
a2 + b2 = 25 - 8
a2 + b2 = 17
a3 + b3
= (a + b)(a2 - ab + b2)
= 5 . (17 - 4)
= 5 . 13
= 65