Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có: \(2b-ab-4\ge0\Rightarrow2b\ge ab+4\ge4\sqrt{ab}\)
\(\Rightarrow\frac{b}{\sqrt{ab}}\ge2\Rightarrow\frac{b}{a}\ge4\)
Xét \(\frac{1}{T}=\frac{ab}{a^2+2b^2}=\frac{1}{\frac{a}{b}+\frac{2b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{31b}{16a}}\le\frac{1}{2\sqrt{\frac{1}{16}}+\frac{31}{16}.4}=\frac{4}{33}\)
\(\Rightarrow T\ge\frac{33}{4}\)
Đẳng thức xảy ra khi a = 1; b = 4
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
\(P=\dfrac{bc}{\dfrac{a^2bc}{c}+\dfrac{a^2bc}{b}}+\dfrac{ca}{\dfrac{b^2ac}{a}+\dfrac{b^2ac}{c}}+\dfrac{ab}{\dfrac{c^2ab}{b}+\dfrac{c^2ab}{a}}=\dfrac{\left(bc\right)^2}{a^2b^2c+a^2bc^2}+\dfrac{\left(ca\right)^2}{b^2a^2c+b^2ac^2}+\dfrac{\left(ab\right)^2}{c^2a^2b+c^2ab^2}=\dfrac{\left(bc\right)^2}{ab+ac}+\dfrac{\left(ca\right)^2}{ba+bc}+\dfrac{\left(ab\right)^2}{ca+cb}\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^2}}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
Câu 1:
\(P=\dfrac{x}{4}+\dfrac{3x}{4}+\dfrac{2y}{4}+\dfrac{2y}{4}+\dfrac{3z}{4}+\dfrac{z}{4}+\dfrac{3}{x}+\dfrac{9}{2y}+\dfrac{4}{z}\)
\(P=\dfrac{1}{4}\left(x+2y+3z\right)+\left(\dfrac{3x}{4}+\dfrac{3}{x}\right)+\left(\dfrac{2y}{4}+\dfrac{9}{2y}\right)+\left(\dfrac{z}{4}+\dfrac{4}{z}\right)\)
\(\Rightarrow P\ge\dfrac{20}{4}+2\sqrt{\dfrac{3x}{4}.\dfrac{3}{x}}+2\sqrt{\dfrac{2y}{4}.\dfrac{9}{2y}}+2\sqrt{\dfrac{z}{4}.\dfrac{4}{z}}=5+3+3+2=13\)
\(\Rightarrow P_{min}=13\) khi \(\left\{{}\begin{matrix}x+2y+3z=20\\\dfrac{3x}{4}=\dfrac{3}{x}\\\dfrac{2y}{4}=\dfrac{9}{2y}\\\dfrac{z}{4}=\dfrac{4}{z}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
Câu 2:
Ta có
\(ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow2b\ge4\sqrt{ab}\Rightarrow\sqrt{\dfrac{b}{a}}\ge2\Rightarrow\dfrac{b}{a}\ge4\)
\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}=\dfrac{1}{\dfrac{a}{b}+\dfrac{b}{16a}+\dfrac{31b}{16a}}\)
\(\Rightarrow P\le\dfrac{1}{2\sqrt{\dfrac{a}{b}.\dfrac{b}{16a}}+\dfrac{31}{16}.\dfrac{b}{a}}\le\dfrac{1}{2.\dfrac{1}{4}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)
\(\Rightarrow P_{max}=\dfrac{4}{33}\) khi \(\left\{{}\begin{matrix}b=4a\\ab+4=2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)
Cho mình hỏi câu 1 vì sao bạn lại phân tích được \(2\sqrt{...}\), ....
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)
\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)
\(=0+\left(a-b-3\right)^2+2011\ge2011\)
Dấu "=" xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:
\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)
<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)
+) Với b=-1
ta có: a=-1+3=2
Nên a+b=1 >-2 loại
+) Với b=-3
Ta có: a=-3+3=0
Nên a+b=0+-3<-2 tm
Vậy min P=2011 khi và chỉ khi a=0; b=-3
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
\(2a\ge ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow\sqrt{\dfrac{a}{b}}\ge2\Rightarrow\dfrac{a}{b}\ge4\)
\(T=\dfrac{a}{b}+\dfrac{2b}{a}=\dfrac{a}{8b}+\dfrac{2b}{a}+\dfrac{7}{8}.\dfrac{a}{b}\ge2\sqrt{\dfrac{2ab}{8ab}}+\dfrac{7}{8}.4=\dfrac{9}{2}\)
\(T_{min}=\dfrac{9}{2}\) khi \(\left(a;b\right)=\left(4;1\right)\)