K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

\(P^2=\left(9+a^2b^2\right)\left(\frac{1}{a}+\frac{1}{b}\right)^2=\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\)

\(P^2\ge\left(\frac{12}{a+b}\right)^2+\left(a+b\right)^2=\frac{144}{\left(a+b\right)^2}+\frac{9\left(a+b\right)^2}{16}+\frac{7\left(a+b\right)^2}{16}\)

\(P^2\ge2\sqrt{\frac{144.9}{16}}+\frac{7.4^2}{16}=25\)

\(\Rightarrow P\ge5\)

16 tháng 2 2020

Đặt P=\(\sqrt{9+a^2b^2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\sqrt{9\left(\frac{1}{a}+\frac{1}{b}\right)^2+a^2b^2\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\sqrt{\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2}\)

Theo cauchy-schwartz:

\(\left(\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\right)\left(\left(\frac{3}{4}\right)^2+1^2\right)\ge\left[\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\right]^2\)

\(\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\ge\frac{9}{4}.\frac{4}{a+b}+a+b=\frac{9}{a+b}+a+b\)

Theo AM-GM:

\(\frac{9}{a+b}+a+b=a+b+\frac{16}{a+b}-\frac{7}{a+b}\ge2\sqrt{\left(a+b\right)\frac{16}{a+b}}-\frac{7}{a+b}\)

Mà a+b≥4

\(\Rightarrow\frac{9}{a+b}+a+b\ge2\sqrt{16}-\frac{7}{4}=\frac{25}{4}\)

=>P2\(\frac{\left(\frac{25}{4}\right)^2}{\left(\frac{3}{4}\right)^2+1^2}=5^2\)

=>P≥5

Dấu bằng xảy ra khi a=b=2

Vậy minP=5 khi a=b=2

NV
21 tháng 4 2020

\(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+30\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)

\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)

\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{40}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2007\)

\(\Leftrightarrow\frac{5}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le2007\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{\frac{6021}{5}}\)

Ta có:

\(5a^2+2ab+2b^2=4a^2+2ab+b^2+a^2+b^2\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}=\frac{1}{a+a+b}+\frac{1}{b+b+c}+\frac{1}{c+c+a}\)

\(\Rightarrow P\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{3}\sqrt{\frac{6021}{5}}\)

Dấu "=" xảy ra khi \(a=b=c=3\sqrt{\frac{5}{6021}}\)

NV
19 tháng 4 2020

Mẫu thức như vầy thì tìm max còn được chứ tìm min sao nổi bạn?

1 tháng 3 2020

Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)

=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

Khi đó

\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)

Áp dụng BĐT buniacoxki  ta có :

\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)

Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)

=> \(VT\le VP\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=can(3)

2 tháng 3 2020

hay quá 

NV
25 tháng 2 2020

\(ab+a+b=\frac{5}{4}\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)