Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :
\(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Vậy : \(A=1\) với a,b,c thỏa mãn đề.
\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)
\(=1\)
Vậy ...
Theo bài ra ta có:
a-b=2(a+b)
=>a-b=2a+2b
a=2a+3b
a-2a=3b
-a=3b
a=-3b
Vì a=-3b nên ta có:
a/b=-3b/b=-3
a/b=-3
=>a-b=-3
-3b-b=-3
-4b=-3
b=3/4
a=-9/4
Ta có
ab-ac+bc=c^2-1
suy ra ab-ac+bc-c^2+1=0
a.(b-c)+bc-cc=-1
a.(b-c)+c.(b-c)=-1
(a+c).(b-c)=-1
Suy ra ta có 2 trường hợp:
a+c=-1 thì b-c=1 (1)
a+c=1 thì b-c=-1 (2)
Từ (1) và (2) suy ra b-c=-(a+c)
b-c=-a-c
b=-a
Vì a và b đoi nhau nen a/b=-1
Vậy a/b=-1
Nhớ k cho mình nha,mình giai rõ ràng và nhanh nhất đó
C Ở DÂU HẢ BẠN!!
\(\frac{4}{9}< \frac{5}{11}< \frac{10}{21}\)VÀ\(5.5=25-2.11=3\)
TA CÓ: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
TA LUÔN CÓ: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
TỪ (1) VÀ (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
VẬY TA CÓ ĐPCM.
Cho \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{c+a}\)
Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
1 < B
CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)
Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2
Từ \(a^2+ab-6b^2=0\Rightarrow\left(a^2+3ab\right)-\left(2ab+6b^2\right)=0\)
\(\Leftrightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
Với \(a=-3b\Rightarrow S=\frac{-3b+3b}{5.\left(-3b\right)+b}=\frac{0}{-14b}=0\)
Với \(a=2b\Rightarrow S=\frac{2b+3b}{5.2b+b}=\frac{5b}{11b}=\frac{5}{11}\)