Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
no la bdt bunhia do ban . nhan a+b+c voi ca 2 ve . ap dung bunhia la ra
áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\) (vì b>0)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\) (1)
c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\) (2)
\(\frac{c^3}{a}+a^2\ge c^2+ca\) (3)
Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
\(\frac{a}{b}+\frac{b}{a}\left(a,b\ne0\right)\)
\(\ge\frac{2b}{b}+\frac{b}{2b}=2+\frac{1}{2}=\frac{5}{2}\)(đpcm)
Dấu = xảy ra khi a = 2b <=> Min = 5/2
tth: thêm hộ cái điều kiện a,b dương
Đặt \(\frac{a}{b}=x\)
Ta có: \(a\ge2b\)
\(\Rightarrow\frac{a}{b}\ge2\)
\(\Leftrightarrow x\ge2\)
\(\frac{a}{b}+\frac{b}{a}=x+\frac{1}{x}=\frac{1}{4}x+\frac{1}{x}+\frac{3}{4}x\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{1}{4}.x.\frac{1}{x}}+\frac{3}{4}x\ge2.\frac{1}{2}+\frac{3}{4}.2=1+\frac{3}{2}=\frac{5}{2}\left(v\text{ì}x\ge2\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}x=\frac{1}{x}\\x=2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=4\\x=2\end{cases}}\Leftrightarrow}x=2\Leftrightarrow\frac{a}{b}=2\Leftrightarrow a=2b\)
a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)
\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Xét hiệu:
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)
\(=\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)
\(=\frac{ab+b^2+a^2+ab-4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+b^2-2ab}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) \(\forall a;b>0\)
Dấu "=" xảy ra khi a = b.
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\).
Bài này là hệ quả của bất đăng thức cosi. Chúc bạn học tốt.
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\)
mà ta có \(ab\le\frac{\left(a+b\right)^2}{4}\)
=>\(\frac{a+b}{ab}\ge\frac{a+b}{\frac{\left(a+b\right)^2}{4}}=\left(a+b\right):\frac{\left(a+b\right)^2}{4}=\frac{4\left(a+b\right)}{\left(a+b\right)^2}=\frac{4}{a+b}\)
Dấu "=" xảy ra khi a=b