Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...
Chúc bạn học tốt!
Với các số dương, áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\) ; \(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{2a+b+c}\); \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+b+2c}\)
Cộng vế với vế:
\(2\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bđt Cauchy-Schwarz
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{1}{a+2b+c}=\frac{1}{\left(a+b\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\frac{1}{a+b+2c}=\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
Cộng theo vế =>đpcm
chứng minh:\(P=\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
\(P=\dfrac{1}{2}\left(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{b}{c}-3\right)=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{1}{2}\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\dfrac{1}{2}\left(\dfrac{a}{c}+\dfrac{c}{a}\right)-\dfrac{3}{2}\)Áp dụng BĐT cauchy:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
tương tự với các phân thức còn lại ta có đpcm.
dấu = xảy ra khi a=b=c
Áp dụng bất đẳng thức Cauchy-Schwartz, ta có: \(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)
Dấu "=" xảy ra khi: \(\frac{1}{2a+b}=\frac{1}{2b+c}=\frac{1}{2c+a}\Leftrightarrow2a+b=2b+c=2c+a\)
\(\dfrac{b+c-a}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Ta có: \(\dfrac{b+c-a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}\)
Viết lại BĐT cần chứng minh như sau:
\(\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}+\dfrac{a}{2b}-\dfrac{1}{2}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{1}{2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{3}{2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{b}{2a}+\dfrac{a}{2b}=\dfrac{1}{2}\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{a}\cdot\dfrac{a}{b}}=2\cdot\dfrac{1}{2}=1\)
\(\dfrac{c}{2a}+\dfrac{a}{2c}=\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{c}{a}+\dfrac{a}{c}}=\dfrac{1}{2}\cdot2=1\)
\(\dfrac{b}{2c}+\dfrac{c}{2b}=\dfrac{1}{2}\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{c}\cdot\dfrac{c}{b}}=\dfrac{1}{2}\cdot2=1\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}\ge3\)
\(\Rightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge3-3=0\)
BĐT đúng nên ta có ĐPCM
Ta có :
\(\left(a-b\right)\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
mà a,b>0
\(\Rightarrow\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\dfrac{4ab}{ab\left(a+b\right)}\)
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{2}.\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{2a}+\dfrac{1}{2b}\ge\dfrac{2}{a+b}\)
A/p bđt Cauchy-Schwarz dạng Engel có:
\(\dfrac{1}{2a}+\dfrac{1}{2b}\ge\dfrac{\left(1+1\right)^2}{2a+2b}=\dfrac{4}{2\left(a+b\right)}=\dfrac{2}{a+b}\left(đpcm\right)\)