Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
a)\(B=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng BĐT AM-GM ta có:
\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}\cdot8ab}-\left(a+b\right)^2=7\)
Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)
Vậy \(Min_B=7\) khi \(a=b=\frac{1}{2}\)
b)\(C\ge\frac{1}{1-3ab\left(a+b\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\frac{16}{1-3ab\left(a+b\right)+3ab\left(a+b\right)}+\frac{1}{\frac{\left(a+b\right)^3}{4}}\ge16+4=20\)
Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)
Vậy \(Min_C=20\) khi \(a=b=\frac{1}{2}\)
Câu 2)
Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)
\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)
Ta có \(a+b=1\)
\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)
\(\Leftrightarrow9\ge4\left(ab+2\right)\)
\(\Rightarrow9\ge4ab+8\)
\(\Rightarrow1\ge4ab\)
Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )
Câu 3)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Mà \(a+b+c=1\)
\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si
\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)
\(\Rightarrow\) ĐPCM
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
\(\Leftrightarrow\frac{\left(2-b\right)\left(2-c\right)+\left(2-c\right)\left(2-a\right)+\left(2-a\right)\left(2-b\right)}{\left(2-a\right)\left(2-b\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{4-2b-2c+bc+4-2c-2a+ca+4-2a-2b+ab}{\left(4-2a-2b+ab\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{12-4\left(a+b+c\right)+\left(ab+bc+ca\right)}{8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc}\ge3\)
\(\Leftrightarrow12-4\left(a+b+c\right)+\left(ab+bc+ca\right)\ge\) \(24-12\left(a+b+c\right)+6\left(ab+bc+ca\right)-3abc\)
\(\Leftrightarrow8\left(a+b+c\right)+3abc\ge12+5\left(ab+bc+ca\right)\)
Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\)thì giả thiết trở thành \(p^2-2q=3\)hay \(4q-p^2=2q-3\)
và ta cần chứng minh \(8p+3r\ge12+5q\)
Theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\)hay \(3r\ge\frac{p\left(4q-p^2\right)}{3}=\frac{p\left(2q-3\right)}{3}\)(*)
Có \(p^2-2q=3\Rightarrow q=\frac{p^2-3}{2}\)(**)
Sử dụng hai điều kiện (*) và (**) ta đưa điều phải chứng minh về dạng \(8p+\frac{p\left(p^2-6\right)}{3}\ge12+\frac{5\left(p^2-3\right)}{2}\)
\(\Leftrightarrow\left(2p-3\right)\left(p-3\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi a = b = c = 1
\(a+b=4ab\Rightarrow\frac{1}{a}+\frac{1}{b}=4\Rightarrow4\ge\frac{4}{a+b}\Rightarrow a+b\ge1\)
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a\left(4b^2+1\right)-4ab^2}{4b^2+1}+\frac{b\left(4a^2+1\right)-4a^2b}{4a^2+1}\)
\(=a-\frac{4ab^2}{4b^2+1}+b-\frac{4a^2b}{4a^2+1}\)
\(=a+b-\left(\frac{ab^2}{4b^2+1}+\frac{4a^2b}{4a^2+1}\right)\)
\(\ge a+b-\left(\frac{4ab^2}{4b}+\frac{4a^2b}{4a}\right)=a+b-2ab\)
Ta có: \(\left(a+b\right)^2\ge4ab\Rightarrow-\frac{\left(a+b\right)^2}{2}\le-2ab\)
\(\Rightarrow a+b-2ab\ge a+b-\frac{\left(a+b\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)