K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

a, 1024 : (17.25 + 15.25) = 210 : [25.(17+15)] = 210 : (25. 25)  = 210 :  210 =1

b, (5.35 + 17.34) : 62 = 34.(5.3 + 17) : (2.3)2 = 34.25 : (22.32) = 32.23=72

c, (23.94 + 93.45) : (92.10 - 92) = 94.(2+ 5) : [92.(10-1)] = 94.13 : 93 = 9.13 =117

Đúng thì nha

20 tháng 9 2018

nguyễn minh anh 

câu b, hơi khó hiểu

16 tháng 11 2019

1) \(2^{x+1}\cdot2^{2014}=2^{2015}\)\(\Leftrightarrow2^{2014x+2014}=2^{2015}\)\(\Leftrightarrow2014x+2014=2015\)\(\Leftrightarrow x=\frac{1}{2014}\)

2) \(7x-2x=\frac{6^{17}}{6^{15}}+\frac{44}{11}\)\(\Leftrightarrow5x=6^2+4=36+4=40\)\(\Leftrightarrow x=\frac{40}{5}=8\)

3) \(3^x=9\)\(\Leftrightarrow3^x=3^2\)\(\Leftrightarrow x=2\)

4) \(7x-x=\frac{5^{21}}{5^{19}}+3\cdot2^2-7^0\)\(\Leftrightarrow6x=5^2+3\cdot4-1=25+12-1=36\)\(\Leftrightarrow x=6\)

5) \(4^x=64\)\(\Leftrightarrow4^x=4^3\)\(\Leftrightarrow x=3\)

6) \(9^{x-1}=9\)\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=0\)

7) \(\frac{2^x}{2^5}=1\)\(\Leftrightarrow2^{x-5}=2^0\)\(\Leftrightarrow x-5=0\)\(\Leftrightarrow x=5\)

8) \(\left(5x-9\right)^3=216\)\(\Leftrightarrow\left(5x-9\right)^3=6^3\)\(\Leftrightarrow5x-9=6\)\(\Leftrightarrow5x=15\)\(\Leftrightarrow x=3\)

9) \(5\cdot3^{7x-11}=135\)\(\Leftrightarrow5.3^{7x-11}=5.3^3\)\(\Leftrightarrow3^{7x-11}=3^3\)\(\Leftrightarrow7x-11=3\)\(\Leftrightarrow7x=14\Leftrightarrow x=2\)

10) \(2.3^x=19\cdot3^8-81^2\)\(\Leftrightarrow2.3^x=19\cdot3^8-3^8=18.3^8=2.3^{11}\)\(\Leftrightarrow3^x=3^{11}\Leftrightarrow x=11\)

Đây là cách làm của mình. Bạn có thể chỉnh sửa tuỳ ý theo cách làm của bạn nhé ^^

Học tốt ^3^

24 tháng 6 2015

ta có A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) <   \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(1-\frac{1}{9}\)

\(\frac{8}{9}\)

suy ra A < \(\frac{8}{9}\)

 ta có A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)j> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

=  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}-\frac{1}{10}\)

\(\frac{2}{5}\)

suy ra A >\(\frac{2}{5}\)