Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Đa thức: \(f\left(x\right)=ax^2+bx+c\) ⋮ 5
\(\Rightarrow f\left(x\right)=5\cdot\left(\dfrac{a}{5}x^2+\dfrac{b}{5}x+\dfrac{c}{5}\right)\) ⋮ 5
\(\Rightarrow a,b,c\in B\left(5\right)\)
Vậy khi f(x) chia hết cho 5 thì a,b,c chia hết cho 5
f=84[05\66\ơ515[52[ư4[\
7;ơ4411[ư1[5
4
4['\
vì
ik
k\uyke]
'uy
'^k''m '\7ys'tfdh'se\ử'ý'0rtư
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
\(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(1\right)=a+b+c;f\left(-1\right)=a-b+c\)
Khi \(a+b+c=0\Rightarrow f\left(1\right)=0\Rightarrow x=1\) là nghiệm đa thức
Khi \(a-b+c=0\Rightarrow f\left(-1\right)=0\Rightarrow x=-1\) là nghiệm đa thức
Vậy đa thức có ít nhất 1 nghiệm.