\(8x^4y^2;B=-2x^5y^2\) và C= -6\(x^6y^2\)

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

hình như đề của bạn sai

theo mk thì C = -6x7y2

Ax2 + Bx + C = 8x5y2x2 + ( -2 ) x6y2x + ( -6) x7y2

= 8x7y2 + ( -2 ) x7y2 + ( - 2 ) x7y2

= ( 8 + (-2) + (-6) )x7y2

= 0 x7y2 = 0

=> đpcm

haha

28 tháng 2 2017

tui cũng thấy vậy đó ^^.

2 tháng 4 2017

Mình bổ sung thêm cho đề bài 2 là CMR với n thuộc N*

7 tháng 8 2017

2) a) \(P=3x^2+y^2-8x+2xy+16\)

\(P=\left(x^2+2xy+y^2\right)+2\left(x^2-4x+4\right)+8\)

\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\forall x;y\)

\(\Rightarrow\) GTNN của P là 8 khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\) vậy GTNN của P là 8 khi \(x=2;y=-2\)

b) \(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\forall x;y\)

\(\Rightarrow\) GTNN của Q là 2013 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\) vậy GTNN của Q là 2013 khi \(x=y=2\)

c) \(M=2x^2+y^2-2xy-2x+2016\)

\(M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2015\)

\(M=\left(x-y\right)^2+\left(x-1\right)^2+2015\ge2015\forall x;y\)

\(\Rightarrow\) GTNN của M là 2015 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) vậy GTNN của M là 2015 khi \(x=y=1\)

7 tháng 8 2017

thanks bạn

3 tháng 9 2017

Chọn C

25 tháng 9 2017

Bài 1:

Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Vậy...

Bài 2:

\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)

\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)

\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)

\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)

Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)

25 tháng 9 2017

bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn