Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
B=25.3.(42003+42002+22001+.......+42+4+1)+25
B=25.[4.(42003+42002+22001+.......+42+4+1)-(42003+42002+22001+.......+42+4+1)]+25
B=25.[(42004+42003+42002+22001+.......+42+4)-(42003+42002+22001+.......+42+4+1)]+25
B=25.(42004-1)+25
B=25.(42004-1+1)
B=25.42004
B=25.4.42003
B=100.42003
\(\Rightarrow\)B chia hết cho 100
A=75(4^2004+4^2003+...+4^24+1)+25= 75(4^2004+4^2003+...+4^24)+75+25=
=75(4^2004+4^2003+...+4^24)+100= 75*4(4^2003+4^2002...+4^23)+100=
= 300(4^2003+4^2002...+4^23)+100= 100[3(4^2003+4^2002...+4^23)+1] chia het cho 100.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, C= 75.( 42001+42000+41999+ ... +42+41+40)+25
= \(75.\frac{4^{2002}-1}{3}+25\)
= 25.(42002-1) +25
= 25.42002
Vì 25.42002 chia hết cho 42002 nên C chia hết cho 42002
b, Vì 25 chia cho 4 dư 1 nên 25.42002 chia cho 4.42002 dư 6
Vậy C chia 42003 dư 6
câu b sai rồi đáng ra phải thế này
\(\frac{25.4^{2002}}{4^{2003}}=\frac{25}{4}=6,25\)
Do đó C chia cho 42003 dư 25.42002 _ 6.42003=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a)S=1-2+3-4+...+2005-2006
S=(1-2)+(3-4)+...+(2005-2006)
S=(-1)+(-1)+...+(-1) Dãy S có 2016 thì có 1008 cặp
S=(-1)x1008
S=-1008
b)Tương tự
c)S=1+2-3-4+5+6-7-8+...+2001+2002-2003-2004
S=(1+2-3-4)+(5+6-7-8)+...+(2001+2002-2003-2004)
S=(-4)+(-4)+...+(-4) Dãy S có 2004 số => có 1002
S=(-4)x1002
S=-4008
\(A=75.(4^{2004}+4^{2003}+...+4^2+4+1)+25\)
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=(4^{2005}+4^{2004}+...+4^3+4^2+4)-\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)
\(3B=4^{2005}-1\)
\(B=\frac{4^{2005}-1}{3}\)
Thay B vào A ta có
\(A=75.\text{}\text{}\frac{4^{2005}-1}{3}+25\)
\(A=25.3.(\text{}\text{}\frac{4^{2005}-1}{3})+25\)
\(A=25.(\text{}\text{}4^{2005}-1)+25\)
\(A=25.(\text{}\text{}4^{2005}-1+1)\)
\(A=25.\text{}\text{}4^{2005}\)
Hok tốt !!!!!!!!!\(A=75\left(4^{2004}+4^{2003}+4^{2002}+...+4^2+4+1\right)+25\)
\(=75\cdot4^{2004}+75\cdot4^{2003}+75\cdot4^{2002}+...+7\cdot4^2+75\cdot4+\left(75+25\right)\)
\(=3\cdot\left(25\cdot4\right)\cdot4^{2003}+3\cdot\left(25\cdot4\right)\cdot4^{2002}+3\cdot\left(25\cdot4\right)\cdot4^{2001}+...+3\cdot\left(25\cdot4\right)\cdot4+3\cdot\left(25\cdot4\right)+25\cdot4\)
\(=3\cdot100\cdot4^{2003}+3\cdot100\cdot4^{2002}+3\cdot100\cdot4^{2001}+...+3\cdot100\cdot4+3\cdot100+100\)
Mà:
\(3\cdot100\cdot4^{2003}⋮100\)
\(3\cdot100\cdot4^{2002}⋮100\)
\(3\cdot100\cdot4^{2001}⋮100\)
\(...\)
\(3\cdot100⋮100\)
\(100⋮100\)
\(\Rightarrow3\cdot100\cdot4^{2003}+3\cdot100\cdot4^{2002}+3\cdot100\cdot4^{2001}+...+3\cdot100\cdot4+3\cdot100+100⋮100\)
\(\Rightarrow A⋮100\left(đpcm\right)\)