Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p
Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng
a. Ta có: chia hết cho 7 nên chia hết cho 7. |
a. Ta có: chia hết cho 7 nên chia hết cho 7.
không chia hết cho 7 nên không chia hết cho 7.
3. .
Ta sẽ đi chứng minh chia hết cho với mọi nguyên.
Thật vậy:
.
Do là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà nên tích chia hết cho .
Cũng do là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích chia hết cho .
Ta có đpcm.
n2 chia hết cho 3 <=> n . n chia hết cho 3
1 thừa số n chia hết cho 3 thì số kia cũng chia hết cho 3.
=> giải thích ở trên rồi còn cái mệnh đề là đúng
P: 42 không chia hết cho 5
Q: 42 cũng không chia hết cho 10
Nên mệnh đề đó là sai
42 ko chia hết cho 5
42 ko chia hết cho 10
nên mệnh đề này sai.
Tk cho mình nha ae!!!!!!!!!!!!! Ai tk mình thì mình tk lại.
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
Xét hiệu:
10(a + 5b) - (10a + b)
= 10a + 50b - 10a - b
= (10a - 10a) + (50b - b)
= 49b chia hết cho 7. (1)
+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7 (2)
Từ (1) và (2) => 10a + b chia hết cho 7.
+ Nếu 10a + b chia hết cho 7 (3)
Từ (1) và (3) => 10(a + 5b) chia hết cho 7.
=> a + 5b chia hết cho 7 (ƯCLN(10; 7) = 1)