Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a = 4m ; b = 5m vào đẳng thức trên , ta có :
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}\)
\(=\frac{16m^2+2.25m^2-m^2}{16m^2+3.25m^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)
\(=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65}{85}=\frac{13}{17}\)
Thay a=4m và b =5m vào biểu thức
Ta có: \(\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}=\frac{16m^2+10m^2-m^2}{16m^2+15m^2-6m^2}\)\(=\frac{25m^2}{25m^2}=1\)
Thay a , b vào đẳng thức , ta có :
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}=\frac{16.m^2+50.m^2-m^2.1}{16.m^2+75.m^2-6m^2}=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65}{85}=\frac{13}{17}\)
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}\)
\(=\frac{4^2.m^2+2.5^2.m^2-m^2}{4^2.m^2+3.5^2.m^2-6.m^2}=\frac{16.m^2+50.m^2-m^2}{16.m^2+75.m^2-6.m^2}\)
\(=\frac{m^2.\left(16+50-1\right)}{m^2.\left(16+75-6\right)}=\frac{65}{85}=\frac{13}{17}\)
Ta có: \(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}\)
Thay a = 4m và b = 5m ta được:
\(\frac{4m^2+2.5m^2-m^2}{4m^2+3.5m^2-6m^2}=\frac{-2}{3}\)
1) tính luôn ra a,b luôn:\(b=\frac{-5a}{4}\Rightarrow b^2=\frac{25a^2}{4}\)
\(a^2+\frac{25}{4}a^2=\frac{29}{4}a^2=\frac{33}{2}\Rightarrow a^2=\frac{66}{29}\Rightarrow b^2=\frac{66.25}{29.4}=\frac{33.25}{29.2}\)
a.b<0
max(a+b)=!b!-!a!=\(\sqrt{\frac{33.25}{29.2}}-\sqrt{\frac{66}{29}}=\sqrt{\frac{33}{29}}.\sqrt{2}.\left(\frac{5}{2}-1\right)\) đề sao cho lẻ thế
2) xem và chép lại không biết tử mẫu thế nào
mk viết phân số nhg sao vt dài k đc
đây:(mk chỉ vt phép tính thui còn nhg~ cái còn lại trên kia r nhé)
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}\)
Ta có:
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)
\(=\frac{\left(16+50-1\right)m^2}{\left(16+75-6\right)m^2}=\frac{65m^2}{85m^2}=\frac{13}{17}\)
\(\frac{a^2+2b^2-m^2}{a^2+3b^2-6m^2}=\frac{\left(4m\right)^2+2\left(5m\right)^2-m^2}{\left(4m\right)^2+3\left(5m\right)^2-6m^2}=\frac{16m^2+50m^2-m^2}{16m^2+375m^2-6m^2}\)
\(=\frac{65m^2}{385m^2}=\frac{13}{77}\)
thay a = 4m, b = 5m vào biểu thức trên ta được :
\(\frac{\left(4m\right)^2+2.\left(5m\right)^2-m^2}{\left(4m\right)^2+3.\left(5m\right)^2-6m^2}\)
\(=\frac{16m^2+50m^2-m^2}{16m^2+75m^2-6m^2}\)
\(=\frac{m^2.\left(16+50-1\right)}{m^2.\left(16+75-6\right)}\)
\(=\frac{65m^2}{85m^2}=\frac{65}{85}=\frac{13}{17}\)