Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
Mình vừa làm mà:
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24
= ﴾4 + 4^2﴿ ﴿ + ﴾4^3 +4^4 ﴿......+ ﴾4^23+ 4^24 ﴿
=﴾4 + 4^2 ﴿.1+﴾4 + 4^2 ﴿.4^2+...+﴾4 + 4^2 ﴿.4^22
=20.﴾1+4^2+...+4^22 ﴿ chia hết cho 20
Ta lại có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24
=﴾4 + 4^2 + 4^3 ﴿+...+﴾4^22+4^23+4^24 ﴿
=﴾4 + 4^2 + 4^3 ﴿.1+...+﴾4 + 4^2 + 4^3 ﴿.4^21
=21.﴾1+...+4^21 ﴿ chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN﴾20;21﴿=1
=> A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy..
Sai đề, thiếu 45.
A = 4 + 42 + 43 + 44 +...+ 423 + 424
= (4 + 42) + (43 + 44) +...+ (423 + 424)
= (4 + 42) + 42(4 + 42) +...+ 422(4 + 42)
= 20 + 42.20 +...+ 422.20
= 20 (1 + 42 +...+ 422) chia hết cho 20.
Vậy A chia hết cho 20 (ĐPCM)
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
tick cho tớ nha !
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\left(4+4^2\right)\left(4^2+...+4^{22}\right)\)
\(=20\left(4^2+...+4^{22}\right)\)maf \(\left(4^2+...+4^{22}\right)>0\Rightarrow20\left(4^2+...+4^{22}\right)⋮20\Rightarrow A⋮20\)
Tuowng Tuwj nhes
\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^4\right)\)
\(=\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+4^{21}\left(4+4^2+4^3\right)\)
\(=84+4^3.84+...+4^{21}.84=84\left(1+4^3+...+4^{21}\right)\)
\(84⋮21;1+4^3+...+4^{21}\ne0\Rightarrow A⋮21\)
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+4^{18}\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=5460+...+4^{18}.5460=5460\left(1+...+4^{18}\right)\)
\(5460⋮420;1+...+4^{18}\ne0\Rightarrow A⋮420\)
A = 4 + 42 + 43 + 44 + . . . + 420
A = ( 4 + 42 ) + ( 43 + 44 ) + . . . + ( 419 + 420 )
A = 20 + 42 ( 4 + 42 ) + . . . + 418 ( 4 + 42 )
A = 20 + 42 . 20 + . . . + 418 . 20
A = 20 ( 1 + 42 + . . . + 418 ) chia hết cho 20
Vậy : A chia hết cho 20