Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét :
\(3^{2014}+3^{2015}+3^{2016}+3^{2017}\)
\(=3^{2014}\left(1+3+3^2+3^3\right)\)
\(=3^{2014}.40\)
\(=3^{2013}.3.40\)
\(=3^{2013}.120\)
Mà \(120⋮120\)
\(\Rightarrow3^{2013}.120⋮120\)
\(\Rightarrow A⋮120\)
\(\RightarrowĐPCM\)
ta có A=3^2014+3^2015+3^2016+3^2017
A=3^2013(3+3^2+3^3+3^4)
A=3^2013 x 120 chia hết cho 120 (ĐCPCM)
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]
= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )
= 1x1008 = 1008
Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )
\(A=3+3^2+...+3^{2016}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)
Vậy A chia hết cho 4
_____________
\(A=3+3^2+3^3+...+3^{2016}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)
\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)
Vậy A chia hết cho 13