Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3^1+3^2+...+3^2008
3A=3(1+3^1+3^2+...+3^2008)
3A=3*1+3*3^1+3*3^2+...+3*3^2008
3A=3+3^2+3^3+...+3^2009
3A-A=(3+3^2+3^3+...+3^2009)-(1+3^1+3^2+...+3^2008)
A=(3^2009-1):2
=>2A=(3^2009-1):2
<=>A=3^2009-1
vi 2 so lien tiep hon kem nhau 1 don vi
=>3^2009-1 va 3^2009 la 2 so lien tiep
=>2A va B la 2 so tu nhien lien tiep
\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
a ) gọi 3 số tự nhiên liên tiếp là a ; a + 1 , a + 2 ( a thuộc N )
ta có : a + ( a +1 ) + ( a + 2 ) = 3a + 3 = 3 . ( a + 1 ) chia hết cho 3 .
vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3 .
câu b thì mk ko biết !
ta có: 2a + b = 0
\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)
ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)
\(P_{\left(-1\right)}=a-b+c\)
thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)
\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)
\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)
ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)
\(P_{\left(3\right)}=a9+3b+c\)
thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)
\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)
\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)
\(P_{\left(3\right)}=\frac{-3b}{2}+c\)
\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)
\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)
\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)
Ta có :
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)
Nên :
\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)
\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)
P/s : Đúng nha
A=1+3^1+3^2+3^3+...+3^2005
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^2006
=> 3A - A = 2A = 3^2006 - 3
=> A = \(\frac{3^{2006}-3}{2}\)
Mà B = 3^2006
Vậy A và B không phải là 2 số tự nhiên liên tiếp
Xem lại đề
Ta có: A = 30 + 31 + 32 + 33 +...+ 32008
Nhân hai vế cho 3, ta có:
3A = 31 + 32 + 33 + 34+...+ 32009
Trừ 3A cho A, ta được:
3A - A= ( 31 + 32 + 33 +34+...+ 32009) - ( 30 + 31 +32 + 33 +....+ 32008)
2A = 31 + 32 + 33 + 34 +... + 32009 - 30 - 31 - 32 - 33 -...- 32008
2A = 1 + 32009
Mà B = 32009
Vậy 2A và B là hai số tự nhiên liên tiếp ( hơn kém nhau 1 đơn vị)