K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2

Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2

suy ra 13 giao thừa - 11 giao thừa chia hết cho 2

xin các bạn k cho mình nhé

9 tháng 1 2016

Vì 6=23 và (2.3)=1

Ta có:

n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)

Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp

suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp)   (với mọi số nguyên n)

Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)

suy ra n(n+1)(n+2) chia hết cho 2,3

hay n^3+3n^2+2n chia hết cho 6

suy ra ĐPCM

có cần gấp nữa không bạn !

4 tháng 2 2019

Coi a là số tự nhiên nhỏ nhất

Bài 1 Khi  chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3  suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6

  hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)

 Suy ra BCNN(3,4,5,6)=32. 23.5=360

           BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)

          a thuộc(358;718;1078,..)

Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078

4 tháng 2 2019

Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0) 

                                                                                                         3n    =(...9)   (số tận cùng của 3n=9)

   Ta có 3n+4+1=3n.34+1

                        =(...9).(...1) +1

                       =  (...0) Vậy 3n+4+1 có tận cùng là 0

Suy ra 3n+4+1 là bội của 10

4 tháng 3 2019

Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1  (1)

Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1.  (2)

Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:

\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)

Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)

Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)

Từ (1),(2) và (3) ta có đpcm.

11 tháng 9 2016

Ta có: A = 1 + 3 + 3+ 3+....+ 310

=> 3A = 3 + 32 + 33 + 34 + ..... + 311

=> 3A - A = 311 - 1

=> 2A = 311 - 1

=> 2A + 1 = 311

=> n = 11