Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab+bc+ca=\frac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}=0\)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\)
\(\Rightarrow abc=0\)
Từ đó ta có hpt\(\hept{\begin{cases}a+b+c=1\\ab+bc+ca=0\\abc=0\end{cases}}\). Theo định lý Viet suy ra a,b,c là các nghiệm của \(x^3-x^2=0\Leftrightarrow x.x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị
Khi đó: \(a^{2019}+b^{2020}+c^{2021}=1\)
\(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow a;b;c\le1.\)
\(a^3+b^3+c^3=a^2+b^2+c^2\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Do \(a;b;c\le1\) nên \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}a^2+b^2+c^2=1\\a;b;c\in\left\{0;1\right\}\end{cases}\Leftrightarrow\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)}\)
a3 + b3 + c3 = a2 + b2 + c2 = 1
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) = 0 ( 1 )
Mà a2 + b2 + c2 = 1 \(\Rightarrow\)| a | \(\le\)1, | b | \(\le\)1 , | c | \(\le\)1
\(\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}}\)
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}}\)
( a,b,c ) là hoán vị của ( 0 ; 0 ; 1 )
Vậy S = 1