K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2022

1.

BĐT cần chứng minh tương đương:

\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

Ta có:

\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)

\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)

Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)

\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)

Do \(a;b;c\ge1\)  nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:

\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)

\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 2 em kiểm tra lại đề có chính xác chưa

NV
5 tháng 4 2022

2.

Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS

Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)

\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)

BĐT cần chứng minh tương đương:

\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)

\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)

Đúng theo (1)

Dấu "=" xảy ra khi \(a=b=c\)

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Ta có:
\(a(b^2-1)(c^2-1)+b(a^2-1)(c^2-1)+c(a^2-1)(b^2-1)\)

\(=a(b^2c^2-b^2-c^2+1)+b(a^2c^2-a^2-c^2+1)+c(a^2b^2-a^2-b^2+1)\)

\(=(ab^2c^2+ba^2c^2+ca^2b^2)+(a+b+c)-[a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)]\)

\(=abc(ab+bc+ac)+abc-[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(=abc(ab+bc+ca)+4abc-[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)]\)

\(=abc(ab+bc+ca)+4abc-(a+b+c)(ab+bc+ac)\)

\(=abc(ab+bc+ca)+4abc-abc(ab+bc+ac)=4abc\)

Ta có đpcm.

7 tháng 1 2019

hông hiểu

NV
12 tháng 6 2020

Đặt vế trái là P

\(P=\sum\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}\ge\sum\frac{2\left(b+c-a\right)^2}{2a^2+2\left(b^2+c^2\right)}=\frac{\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{3\left(a^2+b^2+c^2\right)-2ab-2ac-2bc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 5 2020

Mọi người ơi, giúp mik vs mik cần rất gấpkhocroi

2 tháng 6 2020

Chứng minh cái này đi: \(\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{2}{3}a+\frac{2}{3}\) ( gợi ý: bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\left(a+1\right)\ge0\)

Tương tự với 2 ẩn kia \(\Rightarrow\)\(\Sigma\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{8}{27}\Pi\left(a+1\right)\ge\frac{64}{27}\sqrt{abc}\ge\frac{64}{27}\)

dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

19 tháng 11 2019

Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*) 

(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm