K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

Ta có: a2+b2 chia hết cho ab.

mà ab chia hết cho a.

=>a2+b2 chia hết cho a

mà a2 chia hết cho a

=>b2 chia hết cho a

=>b chia hết cho a(1)

Tương tự: a2+b2 chia hết cho ab.

mà ab chia hết cho b.

=>a2+b2 chia hết cho b

mà b2 chia hết cho b

=>a2 chia hết cho b

=>a chia hết cho b(2)

Từ (1) và (2) ta thấy:

a chia hết cho b, b chia hết cho a

=>a=b

=>A=a2+b2/2ab=a2+a2/2aa=2a2/2a2=1

Vậy A=1

20 tháng 4 2020

câu này bạn làm sai rồi bởi vì b^2 chia hết cho a thì chưa chắc b chia hết cho a .Vì a và b không nguyên tố cùng nhau bạn nhé.

31 tháng 1 2017

a,n3+6n2+8n=n3+2n2+4n2+8n=n2(n+2)+4n(n+2)=(n+2)(n2+4n)=n(n+2)(n+4)

dễ thấy đây là tích 2 số chẵn liên tiếp ,trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 4 

=>n(n+2)(n+4) chia hết cho 16

n chẵn nên n chia 3 dư 1 hoặc n chia 3 dư 2

+n chia 3 dư 1 => n+2 chia hết cho 3

+n chia 3 dư 2 =>n+4 chia hết cho 3

=> n(n+2)(n+3) chia hết cho 3

Tóm lại n3+6n2+8n chia heêtt1 cho 3.16=48

31 tháng 1 2017

hình như mk làm chưa logic lắm,để làm lại:

Vì n chẵn =>n=2k

n3+6n2+8n=(2k)3+6(2k)2+8.2k=8k3+24k2+16k=8k(k2+3k+2)=8k(k+1)(k+2)

Vì k,k+1,k+2 là 3 SN liên tiếp nên tích của chúng chia hết cho 2 và 3 ,mà (2;3)=1 =>tích của chúng cũng chia hết cho 6

=>8k(k+1)(k+2) chia hết cho 8.6=48

31 tháng 1 2017

a)\(n^3+6n^2+8n=n\left(n+2\right)\left(n+4\right)\)

đầu tiên bạn chứng minh nó chia hết cho 16, rồi chia hết cho 3, gộp lại thành ra chia hết cho 48, mình ngại ghi lắm :v

b)\(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)

<=>\(a^2+2a+b^2-2b-2ab=63\)

<=>\(\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=63\)

<=>\(\left(a-b\right)^2+2\left(a-b\right)=63\)

<=>\(\left(a-b\right)\left(a-b+2\right)=63=7.9\)

<=> a - b = 7

16 tháng 2 2015

bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)

16 tháng 2 2015

Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4

b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13

Câu b) tương tự nhé bạn.

Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)

=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc  - c^2)

=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]

=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2

Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10

Thay a - b = 7 ; b – c = 3; a - c  = 10 vào P, ta được:

P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)

= 1/2.(49 + 9 + 100)/(49 – 9)

= 1/2.158/40

= 158/80

= 79/40

# Chúc bạn học tốt!

13 tháng 12 2020

\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)

\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)

\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)

bạn ktra lại đề :)