K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=2+22+23+....+299+2100

A=(2+22+23+24+25)+(26+27+28+29+210)+......+(296+297+298+299+2100)

A=(2+22+23+24+25)+25.(2+22+23+24+25)+....+295.(2+22+23+24+25)

A=62+25.62+.....+295.62

A=62.(1+25+.....+295)

A=31.2.(1+25+...+295)\(⋮\)31

Vậy A\(⋮\)31

Chúc bn học tốt

15 tháng 1 2020

A=2+2^2+2^3+...+2^100

  =(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+....+(2^96+2^97+2^98+2^99+2^100)

=62+2^5(2+2^2+2^3+2^4+2^5)+....+2^95(2+2^2+2^3+2^4+2^5)

=62+2^5.62+2^10.62+....+2^95.62

=62(1+2^5+2^10+...+2^95)

Vì 62 chia hết cho 31 => A chia hết cho 31

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

mk nghĩ bn vào chtt đi chứ giải ra dài quá

10 tháng 10 2017

Sửa đề : 2 + 2+ 23 + ... + 260
2 + 2+ 23 + ... + 260 = ( 2 + 22 + 23 + 24 ) + ( 2+ 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
                                 =20. 30 + 24 . 30 + ... + 256 . 30
                                 = ( 20 + 24 + ... + 256) . 2 . 15 \(⋮\)15
 

30 tháng 7 2019

Ta có:

57+58+59

=57(1+5+52)

=57.31

Vì 31 chia hết cho 31=)57.31 chia hết cho 31

Vậy 57+58+59 chia hết cho 31

Học tốt nhé

30 tháng 7 2019

c)\(^{5^7+5^8+5^9}\)

\(5^7\left(1+5+5^2\right)\)

\(5^7.31\)

\(5^7.31⋮31\)

\(\Rightarrow\)\(5^7+5^8+5^9\)\(⋮\)\(31\)

2 tháng 10 2016

Ta có A = \(1+5+5^2+...+5^{2015}\)

=> 5A = \(5+5^2+5^3+...+5^{2016}\)

=> 5A - A =  \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)

=> 4A = \(5^{2016}-1\)

=> A = \(\left(5^{2016}-1\right):4\)

=> A chia hết cho 31

19 tháng 7 2021

llllllllllllllllllllllllllll

a) Ta có: \(32^{12}\cdot98^{20}\)

\(=2^{60}\cdot2^{20}\cdot7^{40}\)

\(=2^{80}\cdot7^{40}\)

\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)

b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}\cdot11⋮11\)