
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
$A=1.1+2.2+3.3+...+100.100$
$=1(2-1)+2(3-1)+3(4-1)+...+100(101-1)$
$=1.2+2.3+3.4+....+100.101-(1+2+3+...+100)$
Có:
$X=1.2+2.3+3.4+....+100.101$
$3X=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+100.101(102-99)$
$=3X=(1.2.3+2.3.4+3.4.5+....+100.101.102)-(0.1.2+1.2.3+...+99.100.101)$
$=100.101.102$
$\Rightarrow X=\frac{100.101.102}{3}$
$Y=1+2+3+...+100=100(100+1):2=5050$
$A=X-Y=\frac{100.101.102}{3}-5050=338350$

a, S = 2 + 22 + 23 + 24 + ... + 299 + 2100. 2S = 22 + 23 + 24 + 25 + ... + 2100 + 2101 => 2S - S = S = (22 + 23 + 24 + 25 + ... + 2100 + 2101) - (2 + 22 + 23 + 24 + ... + 299 + 2100) = 2101 - 2. Vậy S = 2101 - 2. b, S = 2 + 22 + 23 + 24 + ... + 299 + 2100 = (2 + 22) + (23 + 24) + ... + (299 + 2100) = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2) = (1 + 2).(2 + 23 + ... + 299) = 3.(2 + 23 + ... + 299) => S ⋮ 3. Vậy S ⋮ 3 (đpcm)



Bạn giỏi bạn làm đi đã ngu zồi thích tỏ ra minh ngu hơn. Bạn sợ bạn nếu ko nói câu đấy người ta tưởng bạn khôn chắc
2A = 2^2+2^3+......+2^101
A = 2A - A = (2^2+2^3+.....+2^101) - (2+2^2+......+2^100) = 2^101 - 2
Tk mk nha
đề có sai ko bạn