K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

\(a,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)...+\left(2^{99}+2^{100}\right)\)

\(=6+2^2\cdot\left(2+2^2\right)+2^4\cdot\left(2+2^2\right)...+2^{98}\cdot\left(2+2^2\right)\)

\(=6+2^2\cdot6+2^4\cdot6...+2^{98}\cdot6\)

\(=6\cdot\left(1+2^2+2^4+...+2^{98}\right)\)

Vì \(6\cdot\left(1+2^2+2^4+...+2^{98}\right)⋮6\)

nên \(A⋮6\)

\(b,A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^3+2^5\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)

\(=10+2\cdot\left(2+2^3\right)+2^2\cdot\left(2+2^3\right)+...+2^{96}\cdot\left(2+2^3\right)+2^{97}\cdot\left(2+2^3\right)\)

\(=10+2\cdot10+2^2\cdot10+...+2^{96}\cdot10+2^{97}\cdot10\)

\(=10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)\)

Vì \(10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)⋮10\)

nên \(A⋮10\)

#\(Toru\)

14 tháng 10 2023

mình không biết làm

NM
6 tháng 10 2021

câu b,c có nhầm không bạn nhỉ 

undefined

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

28 tháng 10 2019

Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100

A = (2 + 22) + (23 + 24) + ... + (299 + 2100)

A = 6 + 22(2 + 22) + .... + 298(2 + 22)

A = 6 + 22.6 + ... + 298.6

A = 6.(1 + 22 + ... + 298\(⋮\)6

29 tháng 10 2020

cho 31 

DD
14 tháng 12 2021

\(a=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)⋮3\).

12 tháng 10 2023

thanks , em cũng đang cần !

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

9 tháng 10 2021
Tui có 4 nick đó
9 tháng 10 2021

NHANH NHA DNG CẦN

MA NÀO GIÚP TUI ĐI

23 tháng 12 2024

HHehe

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

Lời giải:

a)

\(A=2^6+2^8+...+2^{98}+2^{100}\)

\(\Rightarrow 2^2A=2^8+2^{10}+...+2^{100}+2^{102}\)

Trừ theo vế:

\(4A-A=(2^8+2^{10}+..+2^{100}+2^{102})-(2^6+2^8+...+2^{98}+2^{100})\)

\(3A=2^{102}-2^6\)

\(\Rightarrow A=\frac{2^{102}-2^6}{3}\)

b)

\(A=2^6+2^8+2^{10}+...+2^{98}+2^{100}\)

\(A=(2^6+2^8)+(2^{10}+2^{12})+...+(2^{98}+2^{100})\)

\(=2^6(1+2^2)+2^{10}(1+2^2)+...+2^{98}(1+2^2)\)

\(=5.2^6+5.2^{10}+...+5.2^{98}=5(2^6+2^{10}+...+2^{98})\vdots 5\)

Ta có đpcm.