Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+21+22+23+24+....+21013+22014
A=(1+21)+(22+23)+....+(22013+22014)
A=1.1+1.2+1.22+2.22+....+1.22013+2.22013
A=1.(1+2)+22.(1+2)+...+22013.(1+2)
A=1.3+22.3+....+22013.3
A=3.(1+22+....+22013)
\(\Rightarrow\)A\(⋮\)3
Câu 1
A = ab - ba
= (10a + b) - (10b + a)
= 10a + b - 10b -a
= 9a - 9b
= 9(a-b) : hết cho 9
Vậy...
các bn giải giúp mình bài này đi mình đang cần rất gấp giải hết 4 bài lun nha
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)
chứng minh tương tự cho A chia hết cho 5
B tự lm nhé xl : mk lười :(
lạc đề cmnr bn ạ chắc bn chưa học đến lớp 6 nên bn chưa biết mũ là j hihi k bt bn có để ý chữ toán lớp 6 k mà nhảy vô làm lung tung vậy
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng
=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)
=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)
=> B = 1 + 40.(3+35+...+397)
Có 1 chia 40 dư 1
40.(3+35+...+397)
chia hết cho 40
=> 1 + 40.(3+35+...+397) chia 40 dư 1
=> B chia 40 dư 1
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)
= 4 . 5 + 43 . 5 + ... + 423 . 5
= 20 + 20 . 42 + ... + 20 . 422
= 20 (1 + 42 + ... + 422) chia hết cho 20
ĐPCM
a^5050
\(A⋮2\)vì\(2⋮2;2^2⋮2;.....;2^{100}⋮2\)
\(A=2+2^2+2^3+.....+2^{100}=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{99}+2^{100}\right)\)
\(A=6+2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)=6.\left(1+2^2+....+2^{98}\right)⋮6\)
bạn cứ nhóm như thế sẽ thấy A chia hết cho rất nhìu số